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Abstract. We introduce a new symmetric cryptographic algorithm, based on the bi-
ological principle of redundancy. This algorithm has very good security and statistical
properties. In addition, it suggests a nontrivial information-theoretical interpretation of
the redundancy mechanism in DNA sequences which does not seem to be present in biolog-
ical literature: according to this interpretation the introns do not directly code information,
but play an essential role in the decoding procedure.

1. Introduction

The RNA-Crypto System (shortly RCS) is a symmetric key algorithm to
cipher data. This algorithm, as shown below, has the peculiarity to expand
the message to be encrypted, hiding the ciphered message itself within a set
of garbage and control information.

The idea for this new algorithm has originated from the observation of
nature, in particular from the observation of RNA behaviour and some of
its properties. The RNA sequences include some sections called introns (the
name is derived from the term “intragenic regions”). These are non-coding
sections of the precursor mRNA (pre-mRNA) or other RNAs, that are re-
moved (spliced out of the RNA) before the mature RNA is formed. Once
the introns have been spliced out of a pre-mRNA, the resulting mRNA se-
quence is ready to be translated into a protein. The corresponding parts
of a gene are known as introns as well. The nature and the role of introns
in the pre-mRNA is not clear and is under intensive research by biologists.
The algorithm described below introduces a mathematical analogue to intron
sequences in the RNA-Crypto System output as a device to add information
which is only apparently chaotic and non-coding, but in fact plays an essential
role in decoding the message.

A general conclusion that can be drawn from the present paper is that,
while the use of cryptanalytic tools in the attempt to decode genetic se-
quences has a long history, the converse direction, i.e. the exploitation of bio-
logical ideas to construct cryptographic algorithms, may produce new fruitful
tools in cryptography as well as nontrivial suggestions in the direction of an
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information-theoretical interpretation of biological phenomena, such as the
redundancy in DNA sequences.

This direction will be the object of future investigations.
In the following we describe the mathematical structure of the new cryp-

tographic algorithm.

1.1. Interpretation

The main goal of the present paper is to use the algorithm described below
to code messages. But the basic idea of the algorithm may also suggest the
possibility to consider redundancy in the pre-mRNA sequences as a protec-
tion mechanism used by nature against possible decoding attacks from the
outside or, from another point of view, as a mechanism giving introns an
important role for coding the resulting mRNA, for example to achieve future
functionalities or realize old ones.

1.2. Properties: disadvantages and peculiarities

As mentioned above, this system has the peculiarity to expand the original
text in our implementation and this expansion is huge. This feature, which
obviously makes the system inapplicable in all those cases in which the plain-
text to be encoded is large, it is on the contrary an advantage in all those
cases in which the size of the plaintext is small, because chaos introduced
by non-coding components (junk), creates a great obstacle to eavesdropping
attempts. As an example, to encode passwords, pin-code, small sentences
that are of the order of tens/hundreds of bytes, this algorithm proves to be
very powerful.

2. Ingredients of the algorithm

2.1. The spaces

For any set X we denote by |X| its cardinality and by XN
0 the family of all

finite ordered sequences of elements of X, i.e.

XN
0 :=

∞∪
n=0

Xn ,

with the convention
X0 := {Ø} .

“Ø” denotes here the null sequence and it is easy to be distinguished by
context from its conventional use as an empty set symbol. The length function
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ℓX : XN
0 → N is defined by

ℓX(x) ≡ ℓXx := n ⇐⇒ x ∈ Xn , x ∈ XN
0 ,

and its value in x ∈ XN
0 is called the length of x and often simply denoted ℓx.

DEFINITION 1 For x ∈ XN
0 , m ∈ N and i ∈ {1, . . . , ℓx} we define the

subsequence:

x̃i,m :=
{
xi, xi+ℓx1

, . . . , xi+ℓx (m−1)

}
, (1)

where, here and in the following, for ℓ ∈ N, the symbol +ℓ denotes addition
modulo ℓ. By definition x̃i,0 is the empty sequence. A subset S ⊆ XN

0

will be called hereditary if, for any sequence x ∈ S, any m ∈ N and any
i ∈ {1, . . . , ℓx}, the sequence x̃i,m, defined by (1), also belongs to S.

Remark 1 Most functions used to manipulate sequences will be of local type,
i.e. not depending on the whole sequence but on some sub-block of it, in the
sense of Definition 1. Therefore, it is notationally convenient to suppose
that all sequence spaces considered (messages, keys, coded messages, . . .) are
hereditary. In the following we will make this assumption.

The algorithm makes use of several sets playing different roles and a priori
different, namely:

— the key alphabet K,

— the message alphabet M ,

— the exons alphabet Bex,

— the introns alphabet Bin,

— the control space S = S1∪S2, where S1, S2 ⊂ S are non-empty subsets
satisfying

S1 ∩ S2 = Ø , |Sj | < ∞ , j = 1, 2,

and, in most concrete cases, we shall choose:

K = M = {0, 1} . (2)

Sets of finite ordered sequences with values in one of these spaces will play
an important role in the algorithm:

— the space of Secret Shared Keys (SSK) K ⊆ KN
0 , which are finite

ordered sequences of symbols in K;

— the space of messages M ⊆ MN
0 , i.e. finite ordered sequences of sym-

bols in M ;

— the exons space Bex ⊆ (Bex)
N
0 , which are finite ordered sequences of

symbols in Bex;
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— the introns space Bin ⊆ (Bin)
N
0 , i.e. finite ordered sequences of symbols

in Bin;

— The union of the exons and introns spaces defines the output alphabet
B = Bex ∪Bin, the union being disjoint;

— the space of Coded Messages (or Output sequences)

C ⊆ (Bex ∪Bin)
N
0 ,

i.e. finite ordered sequences of symbols in the output alphabet.

With the choice (2) the spaces K and M become simply finite ordered se-
quences of standard binary digits and the coded messages will be finite or-
dered sequences of blocks, representing exons or introns.

2.2. Functions

The algorithm uses several classes of functions.

2.2.1. Coding functions
Their role is twofold:

(i) to transform a portion of an open (clear) message into a portion of the
coded message (exons);

(ii) to insert some apparently redundant information in the coded message
(introns).

First we start with the definition of a family of coding functions parametrized
by the control space, i.e. ∀ s ∈ S a function fs is given,

fs : M×K → Bex ∪ Bin ,

the union again being disjoint, with the following properties:

(i) ∀ s ∈ S and ∀ (σ, κ) ∈ M×K

fs (σ, κ) = Σ ∈
{ Bex if s ∈ S1

Bin if s ∈ S2 .
(3)

(ii) ∀ s ∈ S1 and ∀ κ ∈ K the function fs,κ : M → Bex such that

fs,κ(σ) = fs (σ, κ)

is invertible. Its inverse will be denoted f̄s,κ or, if no confusion is
possible, simply by f̄ .

(iii) For s ∈ S2 and κ ∈ K, we set

f̄s,κ(Σ) = f̄(Σ) = Ø .
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Using this notation we can simply write: f̄ : (Bex ∪ Bin)×K → M satisfies

f̄ (Σ, κ) =

{
σ if Σ ∈ Bex

Ø if Σ ∈ Bin .
(4)

2.2.2. Operational functions
We have already said that all functions considered are local. The operational
functions specify which block of the key, or of other control sequences defined
in the system, have to be used at each step of the algorithm. These functions
are parametrized by the output (i.e. coded) sequences:

DEFINITION 2 Let ḡκ : C → K be a family of functions, where K and C
are defined in Sect. 2.1. These functions transform blocks of a key to be used
during the encoding/decoding process.

For convenience and simplicity we will use in the following the notation:

ḡ(κ,Σ) = ḡκ(Σ) . (5)

Intuitively this function indicates which part of the SSK has to be used in
the next step of the algorithm as a function of the output in the previous
step or as a function of the coded message (depending on whether we are
encoding or decoding).

Another interpretation is that the function ḡ produces, at each step, the
SSK that has to be used in the next step (for this reason some chaos prop-
erties are desirable).

Another operational function used in the algorithm is the characteristic
function χS1 : S → {0, 1}, i.e. χS1(s) = 1 ⇔ s ∈ S1.

2.3. Global variables and further notations

In cryptography a Secret Shared Key (SSK) is a sequence of symbols (usually
binary digits) which has been previously shared between the two parties. Its
role is to allow coding of information in such a way that only those who
know this key are able to recover them. The present algorithm is based on
such a SSK (i.e. it belongs to the class of symmetric algorithms) which in
the following will be denoted by κ ∈ K and whose length by NK . We shall
denote by

α = (αi) , αi ∈ S ,

a sequence of symbols in the control space whose length will depend on the
message to be coded. We require this sequence to possess “good random
properties”, i.e. to mimic the properties of generic sequences obtained by
picking at random, with uniform distribution, symbols from the space S.
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In practice such sequences are produced using pseudo-random generators
(PRNG) and their “randomness” can be measured by popular packages of
statistical tests (see Sect. 6.). Any kind of information will be called a mes-
sage (also clear text) and denoted σ ∈ M. Its length will be denoted by NM .
The role of cryptography is to protect this information by preventing any
unauthorized access to it. This goal is achieved by transforming the mes-
sage into a new sequence of symbols, the coded (or crypted) message, using a
transformation which is invertible, but whose inverse depends on the SSK so
that only those who possess it can apply this inverse and recover the message.

In the following the coded message will be denoted by Σ ∈ C and its
length will depend on the system and on the control variable α.

Let us emphasize:

(i) that the algorithm can produce different coded messages, corresponding
to the same message σ and the same SSK, simply by using different
control sequences (α);

(ii) that it is not necessary, during the decoding phase, to know the se-
quence (α) used in the coding phase. This is because the information
about (α) can be deduced from the pair (Σ, κ) (i.e. coded message and
SSK: see formula (5) for a precise formulation of this fact);

(iii) that possible role of introns is to carry important information for the
decoding phase, for example the function ḡ(κ,Σ) can use the informa-
tion in Σ ∈ B to produce a change in the SSK.

Finally, during the coding phase, there is an expansion of the original mes-
sages into the coded message depending on several factors, such as the di-
mensions of the intron sequences and the number of elements of S2 in the
control sequence (α).

2.4. Biological parallelism

In biological interpretation, the combined action of the SSK and of the control
sequence (α) mimic the mechanism of splicing through which the pre-mRNA
is modified by removing certain stretches of non-coding sequences (introns),
while the coded message is the pre-mRNA itself and the clear message is the
final mRNA.

3. The algorithm

3.1. Coding

The coding operation requires:

— a pre-shared key (SSK) κ ∈ K, of length lκ = NK ;
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— a message σ ∈ M of length lσ = NM ;
— a pseudo-random S-valued sequence α = (αi), αi ∈ S;
— two fixed pre-shared numbers n,m ∈ N such that

n | lσ (n divides lσ = NM ) .

Define the i-th bit of the output

Σi = fαi(σ̃li , κ̃ji) =

{
εi ∈ Bex if αi ∈ S1

ιi ∈ Bin if αi ∈ S2 ,
(6)

where σ̃li and κ̃ji are as in Definition 1, εi is the i-th bit of the message, ιi is
an arbitrary intron, and li+1, i.e. the index of the next bit of the message to
be processed, is given by

li+1 = li + χS1(αi)n ,

κ̃ji+1 = ḡ(κ,Σi) .

DEFINITION 3 The sequence Σ = (Σ1, . . . ,ΣN ) ∈ C is the coded message.

3.2. Decoding

The crucial point for the definition of the function f̄ , which is the basis of
the decoding procedure, is that, given the output sequence Σ (i.e. the entire
coded message), which is a sequence of 0’s and 1’s, one is able to distinguish
the single block Σi. In particular one can recognize if Σi ∈ Bex or Σi ∈ Bin.

The decoding operation requires:

— an SSK κ ∈ K, of length lκ = NK ;
— the same fixed pre shared numbers n,m ∈ N as in the coding operation;
— a coded message Σ = (Σ1, . . . ,ΣN ) ∈ C of length lΣ.

Using the above objects and the knowledge of the single blocks (Σ1, . . . ,ΣN )
with Σi ∈ Bex ∪ Bin, the decoding phase computes the i-th block of the
message σ̃i and the ji+1-th block of the SSK κ̃ji+1 , to be used in the next
step, by distinguishing two cases:

Case A: if Σi ∈ Bex, then the i-th block of the message is

σ̃i = f̄(Σi, κ̃ji) (7)

and the ji+1-th block of the SSK κ̃ji+1 is

κ̃ji+1 = ḡ(κ,Σi) .

Case B: if Σi ∈ Bin, then the i-th block of the message is

f̄(Σi, κ̃ji) = Ø
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κ̃j
000 001 010 011 100 101 110 111

(Σi,1,Σi,2,Σi,3)

000 a b c d a b c d
001 b c d a b c d a
010 c d a b c d a b
011 d a b c d a b c
100 a b c d a b c d
101 b c d a b c d a
110 c d a b c d a b
111 d a b c d a b c

Table 1: The seek table Tr,c

and the ji+1-th block of the SSK κ̃ji+1 is

κ̃ji+1 = ḡ(κ,Σi) .

Remark 2 As mentioned at the end of Sect. 2.2., thanks to the definition of
ḡ, in the decoding phase it is not necessary to know the random sequence
(α).

4. A concrete implementation

4.1. The environment

In this section, we introduce a concrete realization of the above abstract
scheme. We make the following choices:

K = M = Bex = Bin = {0, 1} ,

|κ| = NK , |σ| = NM , NK , NM ∈ N arbitrary,

NBex = 3, NBin = 2,

n = 1, m = 3,

S1 = {a, b}, S2 = {c, d},
where a, b, c, d are arbitrary symbols,

B = Bex ∪ Bin = {0, 1}3 ∪
(
{0, 1}3 × {0, 1}2

)
(disjoint union) .

Finally we fix the table T : {0, 1}3 × {0, 1}3 → S, that will be used to define
the functions fα. Table 1 may be public.
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4.2. Functions and implementation

A produces the output (i.e. coded) message in blocks: having produced the
first i− 1 block (i.e. having coded the first i− 1 bits of the message), the i-th
one is produced using:

— the i-th bit αi, of the pseudo-random sequence α,

— the block κ̃ji,3 of the SSK, produced at the i-th step according to the
following rules:

Case (1) If αi ∈ S1 then the i-th output block is an exon given by

Σi = (Σi,1,Σi,2,Σi,3) = (r1, r2, r3) = r ∈ {0, 1}3,

where r = (r1, r2, r3) is a binary number 000 ≤ r ≤ 111 defined as follows.

Case (1.1) If σ̃i,1 = σi = 0 then r ≡ (r1, r2, r3) (see the notation (1)) is any
solution of the equation

Tr,κ̃ji,3
= a

randomly chosen from Table 1.

Case (1.2) If σ̃i = σi = 1 then r ≡ (r1, r2, r3) is any solution of the equation

Tr,κ̃ji,3
= b .

Case (2) if αi ∈ S2 = {c, d}, then the i-th output block is an intron given by

Σi=((Σi,1,Σi,2,Σi,3), (Σi,4,Σi,5))=((r1, r2, r3), (Σi,4,Σi,5)) ∈ {0, 1}3×{0, 1}2,

where r ≡ (r1, r2, r3) is any solution of the equation

Tr,κ̃ji,3
= αi

and the other 2 components of the vector (i.e. Σi,4,Σi,5) are chosen randomly
in the set {00, 01, 10, 11}.

The function f̄ depends on the the first 3 bits of the i-th block Σi of the
output, denoted r = (r1, r2, r3), and on the block κ̃ji,3 of the SSK, as follows.
If Tr,κ̃ji,3

= a then

f̄(r, κ̃ji,3) = 0 = σi (8)

else if Tr,κ̃ji,3
= b then

f̄(r, κ̃ji,3) = 1 = σi (9)

else obviously
Tr,κ̃ji,3

/∈ {a, b}

then
f̄(r, κ̃ji,3) = Ø . (10)
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κ̃j
00 01 10 11

(Σi,1,Σi,2)

00 a b c d
01 b c d a
10 c d a b
11 d a b c

Table 2: An alternative seek table Tr,c

Notice that such a function f̄ satisfies condition (4). The function ḡ depends
on the same variables r = (r1, r2, r3) and κ̃ji,3 as the function f̄ and is defined
as follows. If Tr,κ̃ji,3

∈ {a, b} then

ḡ(r, κ̃ji,3) = κ̃ji+ℓκ (Σi,4Σi,5)10 , (11)

where the subscript 10 means the decimal representation of the binary num-
ber in parenthesis and ji+ℓκ denotes addition of decimal numbers modulo ℓκ.
If Tr,κ̃ji,3

∈ {c, d} then, with the same notations:

ḡ(r, κ̃ji,3) = κ̃ji−ℓκ (Σi,4Σi,5)10 .

4.3. Observation

In this simple implementation of the RNA algorithm, redundancy is given by
the following considerations:

— for each processed bit in the clear message 3 bits will be inserted in the
coded one;

— each intron will insert in the coded message 5 bits;

— we use an uniform distribution for the generation of the sequence (αi);

— then we can suppose that the length of the sequence (α) is |(α)| =
|(αi|αi ∈ S1)|+ |(αi|αi ∈ S2)|;

— clearly in this implementation one must have |(αi|αi ∈ S1)| = NM .

Then, if the original message has the length of NM bits, the length of coded
one is lc ≈ 3NM + 5NM = 8NM .

If we want to reduce the expansion of the message we can replace the
redundant Table (1), in which the equation Tr,κ̃ = s, in the unknown r ∈
{0, 1}3, admits two solutions for any κ̃ ∈ {0, 1}3 and s ∈ {a, b, c, d}, with
Table 2 (in this version must be NA = 2 and m = 2).

In this case the message explosion will be lc ≈ 2NM + 4NM = 6NM .
Another solution in order to diminish the explosion of the coded message

is that to use an asymmetric probability function for the generation of (αi).
See for example Table 3.
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α p

a 3/8

b 3/8

c 1/8

d 1/8

Table 3: Caption required

Using these last two optimizations the approximate length of the coded
message will be reduced to lc ≈ 3NM .

4.4. A more realistic biological implementation

As a further example we discuss an implementation of our model which mim-
ics in a more realistic way the biological phenomenology. The ingredients for
the new implementation are the following:

— the key alphabet K := N;
— the message, intron and exon alphabets coincide and are equal to: M =

A = Bex = Bin := {a, b, c, d};
— the introns space: Bin = {A3\(a, a, a)} (thus NA = 3);

— the Exons space: Bex =
(
{a, a, a} ×

(∪
iA

i
))
, so that

B = {ANA\(a, a, a)} ∪

(
{a, a, a} ×

(∪
i

Ai

))
(since in nature the length of intron sequences is finite, we have abused
of the notation

∪
iA

i in the above formulas);

— the control space S = S1 ∪ S2 with S1 = {c} and S2 = {nc};
— we fix m = 1;

— in the notation (1) the function f will be:

fα(σ̃i,1, κ̃ji,1) =

{
σ̃i if α ∈ S1

(a, a, a,Σi) with Σi ∈ Aκ̃ji,1 if α ∈ S2 ,
(12)

in this case the element (a, a, a) ∈ A3 is the codon to localize the
beginning of the introns in the sequence (it will never appear in the
clear code) and the function f̄ will be:

σi∗ = f̄(Σi, κ̃ji) =

{
(Σi,1,Σi,2,Σi,3) if (Σi) ̸= (a, a, a)
Ø otherwise .

(13)

In both cases one has κ̃ji+1,1 = κ̃ji+1,1.
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5. The role of the coding functions

In Section 2.2. we introduce the definition of coding functions. These func-
tions play an important role in the complexity and in the lengths of the cipher
text.

It is also very important to understand that the number of functions in-
volved in the process of encryption can be huge. In fact, besides the canonical
functions introduced in Sect. 4.1. we can add functions that have the role of:

— Changing the public/secret keys (for example in the cipher text we can
insert a sequence of bits of arbitrary length that will replace the public
(private) key to decode the rest of the message).

— Inserting long sequences of random bits (as before but the inserted bits
are ignored (real redundancy)).

— Moving forward or backward the key pointer position (the presence of
a disruptive effect on the sequencing access to the secret key adds more
noise against the attacks).

— Resetting global parameters like message pointer position, key pointer
position, secret and public data (see before).

It is easy to see that the number of coding functions that can be inserted in
the encoding mechanism is great and may become part of the shared secret
information.

In the same way it is obvious that some coding functions can greatly
increase the size of the cipher text as it is also obvious that the inclusion of
random bits within the text could create an increase in the randomness of
the cipher text.

6. Statistical analysis

6.1. Cryptanalysis

While cryptography studies techniques for concealing a message, cryptanaly-
sis (from the greek kryptos, “hidden” and analyein, “break”) is the study of
methods for recovering the encrypted information without having direct ac-
cess to secret informations used by the algorithm to achieve this goal (secret
keys or SSK). Typically the result of cryptanalysis is the recovery of either
the secret key of one of the two interlocutors or directly of the SSK.

Cryptanalysis is thus the “counterpart” of cryptography and together
they form cryptology.

The term cryptanalysis is usually referred to the logical aspects, i.e. to
attacks directed to point out potential intrinsic weakness of the algorithm.
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It excludes the so-called physical attacks such as bribery, physical coercion,
theft, reverse engineering, etc., which are possible for every algorithm and
must be handled with different methods.

An important cryptanalytic tool used to analyze the RNA-Crypto Sys-
tem is based on statistical analysis. Our statistical analysis of RNA-Crypto
System is based on a well-known battery of tests called Diehard or Dieharder
in the new version (DH). The DH tests is a repertoire of statistical tests for
measuring the quality of a set of random numbers. It is cited by NIST as
one of the best statistical suite for testing randomness. It was developed
by George Marsaglia over several years and first published in 1995 and then
maintained and improved by Robert Brown at Duke University.

We focused our attention on the following tests:

1. Birthday spacings

2. Overlapping permutations

3. Ranks of matrices

4. Monkey tests

5. Count the 1s

6. Parking lot test

7. Minimum distance test

8. Random spheres test

9. The squeeze test

10. Overlapping sums test

11. Runs test

12. The craps test

All these tests are well described in the software package and in literature.

6.2. Our idea

In nature a nucleotides ribbon is a sequence of (almost always) 4 symbols
(a, c, g, t) (sometimes fifth symbol u is added). In computer science a ‘string’
is a sequence of symbols {0, 1}. Thus, if we translate the 4 biological symbols
as in Table 4, then we obtain the correspondence between bits and nucleotides
which allows one to apply the DH tests both to sequences of nucleotides and
to output (encrypted) sequences of our algorithm, thus allowing to compare
the randomness of the two types of sequences by looking at the results of the
tests.

The goal of the present section is to answer the following questions:

1. Do RNA ribbons have a good random behaviour according to DH tests?

2. Do RNA-Crypto System sequences have a good random behaviour ac-
cording to DH tests?
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Base Binary

a 00
c 01
g 10
t|u 11

Table 4: Translation table

6.3. BIO results

6.3.1. The experiment
Since the statistical tests run well when more than 12 Mbytes of data are
available, we used only some very long sequences of nucleotides, taken from
on line standard free databases.

Assuming that we use 2 bits to code each base, in this way 1 byte of
binary data encodes 4 bases. Thus we need sequences of at least 48 M bases
to supply 12 Mbytes of binary data.

6.3.2. The protocol
1. Get a sequence from the database (longer than 48 M bases).

2. Translate it in binary mode.

3. Run the DH test on it.

6.3.3. The data
For the biological sequences we uses the following:

— Caenorhabditis elegans chromosomes I–V, complete sequences,

— Wallaby, whole genome,

— Human chromosome 14 complete sequence,

— Drosophila melanogaster some chromosomes, complete sequences,

all encoded using Table 4.

6.3.4. The results
In Table 5 we can see the results of our experiment using the biological data.
They clearly show that bio-sequences are not random at all. This is due to
several reasons, for example:

— Some parts of a pre-mRNA sequence could be highly repetitive (Satel-
lite, Minisatellite, . . .);

— Some parts of a pre-mRNA sequence could be made up by a very long
sequence of the same nucleotide (Polyadenylation tail, . . .).
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n Test name Status

1 Birthday Spacings FAIL
2 Overlapping Permutations FAIL
3 Ranks of 31x31 and 32x32 matrices FAIL
4 Ranks of 6x8 Matrices FAIL
5 Monkey Tests on 20–bit Words FAIL
6 Monkey Tests OPSO,OQSO,DNA FAIL
7 Count the 1’s in a Stream of Bytes FAIL
8 Count the 1’s in Specific Bytes FAIL
9 Parking Lot Test FAIL
10 Minimum Distance Test FAIL
11 Random Spheres Test FAIL
12 The Squeeze Test FAIL
13 Overlapping Sums Test FAIL
14 Runs Test FAIL
15 The Craps Test FAIL

Table 5: Bio results

6.4. RNA-Crypto System results

6.4.1. The experiment
In the RNA-Crypto System experiment we use long sequences of binary data
encrypted with our protocol (approximately 100 MBytes of data for each
experiment).

6.4.2. The protocol
The protocol used to estimate the randomness of RNA-Crypto System is:

1. run the DNACrypto program on a message of given length,

2. save the encrypted message,

3. run the DH test considering it as a random sequence.

6.4.3. The data
For the cryptographic sequences we uses:

— a 10 Mbytes file filled with ASCII char ’A’,

— a 10 Mbytes file filled with random binary numbers,

— one of the above biological sequence,

all of them encoded using our Algorithm.
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n Test name Passed

1 Birthday Spacings PASS
2 Overlapping Permutations PASS
3 Ranks of 31x31 and 32x32 matrices PASS
4 Ranks of 6x8 Matrices PASS
5 Monkey Tests on 20–bit Words PASS
6 Monkey Tests OPSO,OQSO,DNA PASS
7 Count the 1’s in a Stream of Bytes PASS
8 Count the 1’s in Specific Bytes PASS
9 Parking Lot Test PASS

10 Minimum Distance Test PASS
11 Random Spheres Test PASS
12 The Squeeze Test PASS
13 Overlapping Sums Test PASS
14 Runs Test PASS
15 The Craps Test PASS

Table 6: Crypto results

6.4.4. The results
In Table 6 we can see the results of our experiment using the RNA-Crypto
System data. They clearly show that RNA-Crypto System output sequences
are random according to the DH tests.

6.5. First results — Differences

As expected the results correspond to our ideas on the sequences of nu-
cleotides and maybe also to the ones about the Crypto System. Of course
natural phenomena are not really random like a cryptographic system. Some
obvious questions is why pre-mRNA sequences do not pass the statistical
tests? An immediate answer is that they are not random (life is not ran-
dom). But some of the motivations, from the statistical point of view, may
be the following:

— Some parts of a pre-mRNA sequence can be highly repetitive (Satellite,
Minisatellite, . . .);

— Some parts of a pre-mRNA sequence can be made up a very long se-
quence of the same nucleotide (Polyadenylation tail, . . .).

Is it possible to modify the RNA-Crypto System protocol to obtain the results
similar to those obtained with truly biological sequences? In the following
section we prove that this is indeed the case.
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6.6. Changes: Informatics emulates biology

6.6.1. Modification of the cryptographic protocol — Phase I
The cryptographic model has been built so to avoid the appearance of long
repeated blocks inside the same sequence in order to increase randomness
properties. Here we introduce a new coding function ρ (the replicator func-
tion) that will artificially add such repeated sequences inside the code.

These additions can be of two classes:

— active (they act in some way with the system),
— passive (just redundancy).

6.7. Changes: Informatics emulates biology

6.7.1. Modification of the cryptographic protocol — Phase I
The cryptographic model has been built so to avoid the appearance of long
repeated blocks inside the same sequence in order to increase randomness
properties. Here we introduce a new coding function ρ (the replicator func-
tion) that will artificially add such repeated sequences inside the code. These
additions can be of two classes:

— active (they act in some way with the system),
— passive (just redundancy).

6.7.2. Strategies
The replicator function is given by

DEFINITION 4 Let ρ : M×K× C → C be a junk function,

ρ (σ, κ, o) = Σ = ι, (14)

where C ∋ ι = oσ,κ and oσ,κ is a subsequence of o.

The subsequence ι can be determined (as an example) by the state of the
key κ that can fix the portion to replicate of the message already encoded,
(o), in terms of starting point and length. The symbol σ appears here just
for compatibility with the definition of coding functions. In this way, ι is a
replicated part of the encoded message, and then this mechanism implements
the repeated sequences phenomenon.

6.7.3. Alter cryptographic protocol — Phase II
Due to its random nature the cryptographic model has not significant all-
equal subsequences. We introduce a new coding function τ (the stutter func-
tion) that will add such mono-symbol subsequences artificially. Also in this
case this sub-sequences can be created to be:

— active (they act in some way with the system),
— passive (just redundancy).
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n Test name Status

1 Birthday Spacings FAIL
2 Overlapping Permutations FAIL
3 Ranks of 31x31 and 32x32 matrices FAIL
4 Ranks of 6x8 Matrices FAIL
5 Monkey Tests on 20–bit Words FAIL
6 Monkey Tests OPSO,OQSO,DNA FAIL
7 Count the 1’s in a Stream of Bytes FAIL
8 Count the 1’s in Specific Bytes FAIL
9 Parking Lot Test FAIL

10 Minimum Distance Test FAIL
11 Random Spheres Test FAIL
12 The Squeeze Test FAIL
13 Overlapping Sums Test FAIL
14 Runs Test FAIL
15 The Craps Test FAIL

Table 7: New crypto results

6.7.4. Phase II — Strategies
The stutter function is given by the following definition.

DEFINITION 5 Let τ : M×K → C be a junk function,

τ (σ, κ) = Σ = ι, (15)

where C ∋ ι = ι̃nσ,κ and ι̃ ∈ (Bex ∪Bin), nσ,κ is an integer.

The subsequence ι can be determined (as an example) by the state of the
key κ: the function τ fixes, at random, a symbol in the output set (e.g.
ι̃ ∈ (Bex ∪ Bin)) and extracts a number nσ,κ from the secret key κ. This
mechanism implements the polyadenylation tail.

6.7.5. Notes
In both cases, the encoding functions can be replaced with other techniques.

6.8. Results

New results come from statistical analysis on the new cryptographic data.
Note that the result in Table 7 holds for all the data in the cryptographic set
introduced in 6.4.2.
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6.9. New results — Differences

For the moment there is no proof that the security of the cryptographic
system is not affected by the added redundancy: we cannot find any attack
that could exploit this feature, and we are confident that the new system has
the same level of security as the previous one. In fact, even if an eavesdropper
could isolate the introns, the rest of the message would be exactly equal to the
previous version. Then the safety remains the same (or better). Moreover,
adding redundancy we obtained, as a side effect, the following features:

— Certain robustness to error in transmission. Indeed, in a very redundant
system, the probability that an error prevents decoding is very low.
This also suggests a particular interpretation of redundancy in RNA,
i.e. protection against excessive mutations for example.

— Furthermore, an eavesdropper, during his attack, does not know whether
the piece of code that he is trying to attack is an exon or an intron.
This also suggests another particular interpretation of redundancy in
RNA, i.e. protection against pathogens.

6.10. Conclusions

The results of the above tests lead to some conclusions which may be of more
general significance than their application to the present class of algorithms.
In fact, it is well known that some algorithms can produce good random
sequences without being cryptographically secure.

The results in the present section point out that the converse conclusion
is also true: some algorithms may have definitively bad statistical properties
and yet be quite secure from the cryptographic point of view.

In fact we have seen that the sequences produced by the RNA-Crypto
System algorithm have very good statistical properties but the complexity
of breaking for the modifications of these algorithms (obtained by adding
artificial redundancies) can be even greater than that of the original one.
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