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Abstract

A method for generating pseudo-random sequences of d-dimensional vectors
is considered;it is based on the ergodic theory of periodic orbits in the sense
of [3] for unstable dynamical systems such as the hyperbolic automorphisms
of the d-dimensional Torus. Since they are ergodic, their orbits are dense
and chaotic in some sense, however the ergodic property holds only for orbits
having initial points with irrational coordinates, the remaining ones being
periodic. Unfortunately, those orbits are the only ones that a computer is
able to generate. Since a pseudo-random sequence in [0, 1]¢ is a long periodic
orbit which has chaotic behaviour similar in some sense to the one of aperi-
odic orbit, in this note, we shall prove lower and upper bounds for the length
of the period of orbits of the hyperbolic automorphisms of the d-dimensional
Torus, expressed in terms of the (rational) starting point. The algorithms
proposed are free of computational error, since they work in integer arith-
metic. Surprisingly the elimination of the round off errors turns out in an
increase of the length of the period. Statistical testing and the problem of
estimating the discrepancy of the obtained sequences are also treated.

1. INTRODUCTION
In this paper we consider an algorithm to generate pseudo-random sequences
of vectors in dimension d > 2 .

It is well known that for high dimensional problems, the numerical- sta-
tistical methods are more efficient than traditional methods of the numerical
calculus and that the problem of generating d-dimensional pseudo-random
sequences cannot be reduced to the generation of pseudo-random numbers
(this both for theoretical and practical reasons such as the length of execu-
tion). Therefore methods to generate directly pseudo-random sequences of
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d-dimensional vectors are of practical interest. The notion of pseudo-random
sequence depends on the apriori choice of a set of statistical tests in a sense
that we try to make precise through the following definition.

A family of pseudo-random sequences on a set () is given by :
i) an evolution map S : Q — Q ;
ii) a subset Qp C €, called the set of initial points with the property that
Vg € Qq, the orbit of zq (with respect to S) , that is the set

Qpy={zeQ:ax=5"2,ne N}

is a sequence of points of {2 which passes some standard statistical tests.
A description of the statistical tests used to define pseudo-random sequences
can be found e.g. in [9] (see also [14]).

Thus, the theory of the generation of pseudo-random sequences from a
set {2 naturally leads to study the statistical properties of endomorphisms
S : Q — Q. The pair (£2,5) is called a (deterministic, discrete) dynamical
system.

Frequently, it is also given a measure p invariant with respect to S :

W(E)=pu(S™E) YV E u— measurable in

and the triple (£2,.5, u) is called a metric dynamical system.

It is well known that to every metric dynamical system one can canonically
associate a stationary Markov chain (X,,) whose point probabilities are given
by :

Pr{Xy € Ep; X1 € By;... X, € B} = w(EoNST'E;N...NST"E,) ; E; C Q

Thus the chaotic hierarchy for stochastic processes (ergodicity,mixing of var-
ious order,K-systems,...,Bernoulli systems,...) can be carried over to dynam-
ical systems and one can speak of chaotic properties of deterministic dy-
namical systems.

These considerations suggest that the dynamical systems with strong chaotic
properties are natural candidates as generators of pseudo-random sequences.
In fact these systems seem to realize precisely the program of generation
of pseudo-random sequences, i.e. to construct a deterministically generated
sequence which mimics the behaviour of a random sequence.



There are however some theoretical obstructions to the naive application
of the theory of chaotic dynamical systems to the generation of pseudo-
random sequences :

1) The computer is a finite machine, hence it can only generate periodic
sequences.

2) The length of the period of a sequence does not guarantee per se good
statistical (i.e. chaotic) properties of the sequence.

3) All the results of ergodic theory are valid up to sets of measure zero and,
for most dynamical systems, the states effectively realizable on a computer
fall precisely into the class of zero measure sets, excluded by the results of
ergodic theory (see below for an example).

Computer experiments however show that, notwithstanding the above men-
tioned theoretical obstructions, a large class of chaotic dynamical systems
are indeed good generators of pseudo-random sequences. In other terms : it
is an experimental fact that the long periodic orbits of a dynamical system
with stocasticity properties exhibit a chaotic behaviour similar to the one of
aperiodic orbits.

This fact suggests a natural generalization of classical ergodic theory in the
following direction: while classical ergodic theory studies the conditions un-
der which, for a large class of initial conditions x, a relation of ergodic-type
holds :

1 N
limy—oe D f(5"20) = /Q fdu Yf € CYQ) (1.2)
n=1

for a dynamical metric system (€2, S, i), now we are interested to investigate
relations such as :
N

1 " 1
N 3 S(8"a0) = [ fdn = () (1.3)
for a large class of initial conditions xy belonging to a periodic orbit of lenght
N | where N is a large enough, but finite integer, and o > 0 .

Some results of the type (1.3) have been established for particular dy-
namical systems (see e.g. [7]).
In the sequel, we refer to the property (1.3) as an ergodic property of periodic
orbits.
Our aim will be to study the ergodic theory of periodic orbits in the case
of automorphisms of the Torus and to apply the results to the problem of
generation of pseudo-random vectors in arbitrary dimensions.
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We prove, by theoretical arguments based on central limit theorem, that
an estimate like (1.3) should hold with & = £ (section 3.) and show that
numerical experiments confirm this prediction (cf. figures 1.,2. ).

In the sequel, we will consider a particular class of unstable systems,
where Q0 = T (d-dimensional Torus) and the evolution is described by the
so called hyperbolic automorphisms of Torus.

The choice of the hyperbolic automorphisms of the Tori is easily un-
derstood if one remarks that the most famous phisical examples of random
sequences are obtained by means of unstable systems.

Some of the usual method to generate pseudo-random numbers are based

on the theory of Galois fields, and they generate periodic sequences which
pass the usual statistical tests; so we can say that they are chaotic sequences
,in some sense. However, such generation methods give little information
about the link between the length of the period and the fact that the orbits
are eventually chaotic.
From our point of view these methods could be considered also as automor-
phisms of the Torus. However not metric automorphisms, in the sense that
the Lebesgue measure is not preserved. Thus a theory of quasi-invariant
(with respect to the Lebesgue measure) automorphisms of the Tori, would
unify the present approach and the one based on Galois fields.

In section 2., we prove some lower and upper bounds on the period of
orbits of hyperbolic automorphisms of the d-dimensional Torus, in terms of
rational starting points. It is remarkable that our lower estimate improves
linearly with the dimension (cf. (2.18) ).

In section 4. we describe computer algorithms to construct pseudo-
random sequences without computational error, that is in integer arithmetic.

In section 5. we deal with statistical tests for the obtained sequences of
random vectors.2.

An hyperbolic automorphism of the Torus 7% is defined by a map :
S T4 — T (2.1)

such that, if ¢ € T
¢ — A (modl) = S¢ .
where A is a symmetric matrix of order d with integer entries such that

| detA |=1 and its eigenvalues do not belong to the unit circle.
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As it is easy to see, the normalized Lebesgue measure on the Torus is invari-
ant under the evolution of S. The hyperbolic automorphisms of the Torus
have been widely studied in the literature (see e.g. [Arn 68, Bow 75] and the
references quoted in section 3.), and many results have been shown about
their property of ergodicity and mixing (that is chaoticity of the orbits, in
some sense). However, the ergodic properties of the map S are guaranteed
only for the orbits which have initial point with irrational coordinates, while,
as we shall see below, the orbits obtained starting from rational points are
periodic and those orbits are the only ones that a computer is able to gener-
ate.
If ¢ = (¢1,....04) € T we have:

5(¢) = Ag — [Ag] = {A¢} (2.2)

where | ] and { } denote , respectively, the integer and fractionary part of
the vector Ap € T? = [0,1]¢. The map defined in (2.1) , (2.2) is the more
general hyperbolic automorphism of the Torus 7% . If \; ,i = 1,..r are the
(real) eigenvalues of the matrix A, we have

AL Ao Ay |=| detA |= 1.

Since | A; |# 1,Vi, we can divide the eigenvalues of A into two groups :
the ones with absolute value less than 1 and the ones with absolute value
greater than 1. So, the matrix A is ”contracting” along the directions of
the eigenvectors corresponding to the eigenvalues of the first group, while it
is "expanding” along the directions of the eigenvectors corresponding to the
eigenvalues of the second group. This property is referred as the hyperbolic
property of the matrix A. So, through any point of T two local manifolds
exist, the so called stable and unstable manifold, such that the map S is
contracting along the first manifold and it is expanding along the second
one.

Moreover generically the eigenvalues will be irrational numbers,hence even
if always working with integers,in approriate coordinates one is effectively
doing irrational rotations of the Torus.

A famous example in dimension d = 2 is obtained taking :

A_(i 1) (2.3)



Wehave \; = )\ = 1+2‘/5, Ao = A1 if v; and v, are the respective eigenvectors
(they are irrational!) the matrix A is contracting along the direction of vy
and expanding along the direction of vy .

To construct examples of hyperbolic automorphisms of Tori , one can
proceed as follows.

Take two symmetric matrices A = (a;;), B = (bni) of order d > 1 with integer
entries such that | detA |=| detB |= 1. Then, we consider the symmetric
matrix C = A ® B = (a;;bp;) obtained as the the tensor product of the
matrices A and B .As it is easy to see by means of spectral decomposition,
the eigenvalues of C' are given by {A\;y;}ij=1,4 , where {\;},{u;} are the
(real) eigenvalues of A and B, respectively.

We set S(¢) = C¢ (mod 1) ; then, since detC' = (detA) - (detB) , in order to
obtain that S is an hyperbolic automorphism of the Torus, it is enough to
impose that | A\, |#1,Vi,5=1,...d.

In this way we can obtain hyperbolic automorphisms of arbitrary high di-
mensions,by means of lower dimensional ones.

Another symple way to obtain hyperbolic automorphisms of Tori is the

following. Consider two symmetric matrices T} , T of order d with integer
entries satisfying the hyperbolic property (for example, T; may be diagonal or
block matrices). Then, T' = T5T1T5 is an hyperbolic matrix , if its eigenvalues
do not belong to the unit circle.
This last property is generic, in the sense that the pairs 77,75 such that
T5T,T; has an eigenvalues with absolute values 1 are very rare. However at
the moment there are no simple criteria which allow to exclude the occurrence
of eigenvalues with absolute values equal to 1. Such criteria would be of
practical relevance for the construction of hyperbolic automorphisms of Tori
of arbitrary large dimensions.

Example 1
Put
5 0 2 1 0 0
Th=(0 1 0] ,T,=(0 2 1
2 01 0 1 1
Then :
5 2 2
T=1TNHTHh=2 5 3
2 3 2
Example 2



Put

1 0 0 2 0 1
Ty,=10 13 8| ,T,=[0 1 0].
0 8 5 1 0 1
Then :
9 8 7
T:T2T1T2: 8 13 8
7 8 6
Example 3
Put
1 0 0 O 2 1 0 0
0 5 2 0 1 1 0 0
Li=1g 91 0] 2700 21
0 0 0 1 0 0 1 1
Then :
9 7 4 2
7 6 4 2
T ="TT\T, = A 4 5 3
2 2 3 2

As it is easily seen, the eigenvalues of these matrices T" have modulus different
from 1.
It is well known that the normalized Lebesgue measure on the Torus is in-

variant under S and its is not only ergodic (that is (1.2) holds), but also
mixing (see e.g. [4]) .
As it is easy to prove by induction, we have :

St = A*¢ (modl) Vo € T* Yk € N (2.4).

Now we state the following :
Proposition 2.1
If the initial point ¢ # 0 has rational coordinates, that is :

¢ = (¢17¢27 ¢d) S [07 1]d 7¢i € Q 77; = 17 "d7
then the S-orbit of ¢ , Q4 = {S*¢,k € N} , is periodic. Proof.
Trivially, if ¢ = 0 , we have S*¢ =0 , Vk.



If @ # 0, let be ¢; = %’ .0 = 1,..d , where p; and ¢; are relatively prime
integer numbers.

We have ,Vi=1,..d;Vk € N :

d d
p.
(A49), =3 Ao, = 3 ALY
Jj=1

j=1 4dj
1
= ————(aip [[ ¢ +atm [T a5 + o+ afpa [] )] =
4192 4d £l o id

Q 7

where () = szl qr , IN; an integer .

Passing to the map S :
Ni a;

(S*¢); = {5} =0 (2.5)

where «; is an integer less than Q).

Than, Vi = 1,..d there are at most () possible choices of the numerator o
in (2.5) which give distinct point in 7 . So, the S-orbit with initial point ¢
has to be periodic. From the above proposition, it follows that, if we denote
per(¢) the period of the orbit having rational initial point ¢ = (¢4, ...¢4), ¢; =

% , we have :

K3

d
per(¢) < (I] a)"- (2.6)
i=1
The inequality (2.6) gives an upper bound to the period of an orbit with
initial point having rational coordinates. We observe that (2.6) is only a
rather crude estimate to per(¢).
Our aim is to find (rational) initial points ¢’s such that per(¢) assumes very
large values. In this way, we should have a very long periodic orbit which
simulates a chaotic aperiodic orbit, in the sense discussed in section 1.

Let us consider a rational initial point ¢ # 0 which is very close to 0 |,
that is the denominators ¢; , © = 1,..d are large and the numerators p; are
small. Then, the point ¢, under iteration of the matrix A , remains in (0, 1)¢
for a large number of iterations, say L.



The first part {¢, S¢, S?*¢,...ST¢} of the orbit of ¢ corresponds to the tract
where S is a linear map (that is S = A) .Due to the hyperbolic property
of the matrix A, the points {S*¢}r—o_ 1 are all distinct and approach the
boundary of (0,1)¢ when k increases.Hence, per(¢) > L .

However, the above remark is useless for our purposes because the orbit,
although long, is not uniformly distributed in 7¢. Indeed, we observe that
the point ¢ after a certain number of iterations follows a path close to the
direction of the eigenvector corresponding to the largest eigenvalue of A until
it reaches a boundary of (0,1)? and reemerges from the opposite side.

The above consideration shows that the choice of the initial point ¢ has
to be more accurate, if we wish to obtain a long periodic orbit which well
simulates a chaotic orbit.

Our next step will be to look for initial points ¢ for which per(¢) is large
enough, and S does not behave as a linear map along the first part of the
orbit.

Proposition 2.2

Let ¢ € T? and [ € N be such that S'¢ = ¢, with ¢ = (¢, ..0q), ¢; = %,pi, i
relatively prime integers , i =1,2,..d . '

Then, for every i = 1,2, ..d , ¢; divides the integer number A; = det(A! —
I), where [ is the identity matrix of order d.

Proof.
By the hypothesis , A'¢p = ¢ + M;, where M; denotes a d-dimensional vector
with integer components ; so, we have :

(A' =D = M, (2.7)

Since A is an hyperbolic matrix, the matrix A = A — [ is invertible ; then
there exists a matrix A with integer entries such that A1 = A%A.

Hence : 1
= —AM,. 2.8
¢ A, M (2.8)
From (2.8) , by separation of the components, it follows that :
Pi a;
B 2.9
ai A (2:9)
for a certain a; € Z, and so :
Ayp;
;= 2P (2.10)
qi



Since p; and ¢; are relatively prime, (2.10) implies that ¢; divides A; and this
completes the proof .
From the Proposition 2.2 , it easily follows :

Corollary 2.3If , for some ¢ = (%) and [ € N S'¢p = ¢ , then

| det(A'=1) > q1 @2+~ qu (2.11)

We notice that :
| det(A'— 1) |= H A1 (2.12) ,

where A, A9, ...\, denote the eigenvalues of the matrix A . We can divide

the spectrum A4 of A into 4 groups:
A1:{>\€AAI>\>1},AQZ{)\GAAZO<)\<1}
As={AeAs: 1< A<0}, Ay={ €Ay A< -1}

Denote n; = card(A;) ;i =1,.4 ; Mp, = maz{\ € \;} ,ma, = min{\ € A;}

and split the product in (2.12) into 4 factors :

B T 1N =11= ] (V' =1) < My,™,

A€ AEAL

i) TIIN-1= [[a-XN)< [[-my)=1-m)"™ <1,

AEA2 AEA2 AEA2

iii) We have :

[T 1Y =1l 10 =mat) = (1= ma)™

AEA3 AEA3

moreover mh, > my,, which implies (1 —m/,) < (1 —may,) ;

Then :
H | >‘l —1 |S H (1 _ml\s) - (1 _m/\3>n3'
AEA3 AEA3
iv) We have :
ITIAN-1]< [ @-mh,)=@1-m, )™ (2.13)
AEAy AEAy

Notice that , if z < —1, :

(1—2") <1 —a) (2.14)
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Indeed, as it is easily seen by using the binomial formula, (2.14) is equivalent
to the following inequality:

ot < (1) + ;fl (]i) 2R (1), (2.15)

where , Vk , 2!7%(—1)""% > 0 ; so , if [ is even (2.15) holds, since —z! < 2!
and , if [ is odd it also holds, since (—1)'z! = —zt .
Then , from (2.13), (2.14) , we have :

T 1N =11 (1 —my)mh

AEA4
Therefore , from 1), ii), iii), iv) , we get :

A = T I = 1< MPY(L = ma,)™ (1 — ma,)™ (2.16)
AEA

Thus :
log | A | +nslog(1 —my,)

~ nglog(1 —my,) + nilogMy,

Finally, by using (2.11), (2.12) , we obtain : Proposition 2.4

In the hypotheses of Proposition 2.2 , the following inequality holds :

> log(qu - -qa) + nslog(1l — my,)

. 2.17
~ nylog(1 —my,) + nilogMy, (2.17)

Example (d=2)

If A= (? 1) ,and S'¢p = ¢ , we have: ny, = 1,np, = np, = 0, My, =

% = \,my, = A' , and from (2.17) we obtain : [ > % that is
A >| det(A! — I) | which is almost obvious, since A is the largest eigenvalue
of A . By Proposition 2.1 and Proposition 2.4, we get the following :
Theorem 2.4

Let ¢ = (2,..09) € T? with p; and ¢; relatively prime , i=1, ....d , and let
S be an hyperbolic automorphism of the Torus 7 .
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Then, if Q4 is a periodic orbit with initial point ¢ € T, we have :

d d

log(TT-; ¢i) + naslog(l — ma,)
L 3 3L < | I i) . 2.18
nalog(l —my,) + nalogMy, — per(¢) < (izlq ) ( )

Remark 2.1

Theorem 2.4 furnishes lower and upper bounds to the period of an orbit
having initial point with rational coordinates.

The left hand size of (2.18) is particularly meaningful in the case when the
dimension d is large ;if , for istance, we choose ¢; = ¢ , i=1, ...d , ¢ being

a large integer number, we obtain for per(¢) a lower bound of order % ,

which implies that the period is very large.Now, we are concerned with the

problem of determinating a point ¢ € T and an integer [ such that :
Slp=¢ (2.19)

SFp # ¢ Vk < L. (2.20)

If ¢ has coordinates %,i = 1,..d , then condition (2.19) follows from the fact

that ¢; divides the coefficients of the i*" column of the matrix (A — 1) , as it
is easy to see.

Then, the choices of ¢ and [ have to be done in such a way that there exist
almost one column of the matrix A’ — I for which the greatest common
divisor of the elements on that column is different by 1. This one is only a
sufficient condition, but it is not necessary, as we can see by the following

counterexample:
(21 B ~ (1/5Y\
A=(7 1) ’l_2’¢_<2/5>’

so- (42) 0= (4) -+

Note that the matrix A2 — [ = <§ ?

are not divisible by 5 . Obviously, the fact that the condition (2.19) holds
does not imply that also condition (2.20) is satisfied.

Example
(2N s (V2.
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we have S%¢ = ¢ , but also S3¢ = ¢ .So, in order to obtain a proper periodic

orbit of period [, some further conditions have to be required.

Proposition 2.5

Let [ be a prime integer number and let ¢ € T¢ be a vector with rational
components such that :

Slp = ¢ (2.21)
So# 0 (2.22)
Then :
Sk #+ ¢ ,Vk <.
Proof

Let us suppose that there exists an integer k < [ such that S¥¢ = ¢ . From
algebra follows that there exist integer numbers n and m such that

nk + ml = the greatest common divisor of k and [.

Since [ is prime, we have : nk +ml = 1.

Then :  S™+mlg =S¢ #£ ¢ (from (2.22) ) .

On the other hand : S"+mlg = §nk(Smlg) = S = ¢ | and we obtain a
contradiction. This completes the proof of the Proposition 2.5 .Proposition

2.6
Let q1, ...qq and py, ...pg be relatively prime integers and consider the vectors
in 7% :
¢=(2,..0) o = (0, WBLL0),0<p < giyi=1,d
where only the i-th component of ¢ is non-zero.
Denote k; = per(¢™) ,i = 1,...d ;so that S¥¢() = ¢() and K = the least common
multiple of the integers kq,...kg . Then :
i) SK¢ = ¢. Moreover : ii) K = per(¢).
Proof
First, notice that, as easily seen, for any integer [

d
Sle =" SV, (2.24)

=
Since K is the l.c.m. of ky,...kq and S*1¢) = ¢U) | then SKpU) = ¢pl)  j =
1,..d and so S¥¢ =9, SK¢\) = 1| 1) = ¢ which proves the part i) .
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To prove ii), let us suppose that an integer K < K exists such that S K O =
¢. We ﬁf( i and set ¢ = ¢ + ¢ | where ¢V = (&, ....%,O,Z—E,...Iq’—:) :
Then, S¥¢ = ¢ =

(A% — 1)(¢" + ¢!9) = an integer vector . , that is

(AX = 1)¢D = ([1j2: ¢;) " (AX —I)M , where M € Z* From this follows
that (I1;. q;)(AK —T)¢) = an integer vector , that is 1z qj%(AK —1Ie; =
an integer vector , where e; = (0,0,..0,1,0,...0). The last equality implies
that ¢; has to divide the i-th column of (A* —1TI), then SX¢® = ¢ and K is
a multiple of k;. Since this argument can be repeated for any fixed ¢ € {1, ...d}
, a contradiction follows.This completes the proof of the Proposition 2.6 .
Remark 2.2
The above proposition is very useful to construct periodic orbits with large
period. Infact, if one knows periodic orbits with initial points ¢ having
long periods k; , the orbit starting from ¢ has a much larger period. This
fact permits to save a lot of computer time, when searching long periodic
orbits by means of a machine. Remark 2.3

The theory developed in this section allows us to construct periodic sequences
(that is orbits) of d-dimensional vectors with large period, by using the prop-
erties of hyperbolic automorphisms of the d- dimensional Torus .Moreover, it
suggests how the initial point ¢ (with rational coordinates) has to be choosen
so that the period of the orbit results very long .
Then, the ergodic and mixing properties of hyperbolic automorphisms of Tori
(see e.g. [4]) entitle us to believe that the orbit are chaotic.

Indeed, the chaos property, the uniform distribution, the indipendent
distribution of the components, for the obtained sequences of d-dimensional
vectors have to be tested numerically, by means of statistical techniques.
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3. DISCREPANCY OF THE PSEUDO-RANDOM SEQUENCES
In Monte Carlo integration one is interested to compute the integral [;q f(x)dA
, where f : T% — R is a continuous function and d\ is the normalized
Lebesgue measure on 7% .

If {x,}nen is a uniformly distributed sequence on T? that is the measure
UN = % SN | 8., converges narrowly to the Lebesgue measure d) , in the
sense that we have the approximation :

/Td f(x)dun — /Td f(x)d\ (as N — ) (3.1)
that is : N
[ f@anm 3 flea) s N large. (32)

The speed of convergence in (3.1) is particularly important, in order to ob-
tain fast integration. To give a "measure” of the speed of convergence, we
introduce the so called discrepancy (see e.g. [16]) .

Let {z,} be a sequence of points in 7% and E a subset of 7% . Then , the
quantity Sy(F) = | xg(x,) counts the number of n , 1 <n < N , with
z, € E . Definition 3.1

The discrepancy Dy of a sequence {z,,} C T is defined by :
1
Dy = sup | NSN(J) —A(J) | (3.3)
J

where .J runs through all subsets of T .

For an infinite sequence of points in 79 we have that limy_. Dy = 0 is

equivalent to say that the sequence is uniformly distributed in 7 (cfr [16] ).
Many estimates have been obtained by several authors for the quantity :

|y X fw) = [ s@ar] (34

as a function of the discrepancy Dy , f being a function of bounded variation
(see e.g. [16] for a review) .

The discrepancy of an average sequence of points in 7% is under control
thanks to the law of the iterated logarithm (see [Chu 49, Kie 61]) from which
we obtain (see also [16] ) :

Dy = O(N~2(loglogN)?) (3.5)
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almost surely.

Really, ad hoc sequences can be constructed in such a way they behave
much better than the average sequence ; some authors considered examples
of finite sequences for which Dy = O(N~1(logN)®) (see [16]) . Our aim is to
obtain an estimate for the discrepancy of the sequence {x,} of points in 7%
obtained under iteration of the hyperbolic automorphism S , that is :

r, =S"r , v e T (3.6)

Altough the dynamical system (7, S, d)\) is not only ergodic, but also mixing
(see e.g. [4]) , it is very difficult to obtain explicit estimates of the speed of
convergence in the ergodic theorem:

In general, no positive ergodic theoretic result is possible in this direction
; for instance, Krengel [15] has shown in a certain case that the speeed of
convergence can be arbitrarly slow ; on the other hand, Halasz [11] proved
that in some cases the convergence can be arbitrarly fast, that is close to the
order N7t .

In our case, although the Lebesgue measure A is mixing at an exponential
rate , we are not able to find an explicit estimate for the speed of convergence
in the ergodic theorem. It turns out to be useful the following central limit
theorem.Theorem 3.2

Let S : T* — T be an hyperbolic automorphism of the torus 7¢ and let
f:T* — R be an Holder-continuous function with [« fd\ = 0.
Then, almost for all z € T¢ the limit exists :

1

N R 2 1
D; = lim N[/(kz:% F(S%2))2dN]2

N—oo

and DJ% is equal to the sum of the absolutely convergent series :

/fzd/\+2kzl/f(f05’“)d)\.
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Moreover, if Dy # 0, Vz € R, we have :

. St f(Skr) 1 /2
hm )\ xr € Td < Z = 7/
N—oo { Df\/ N } V 21 J—c0

For the proof of this theorem see e.g. [18].

2
exp(Tu)du.

Indeed, for an hyperbolic automorphism of the torus a Markov partition
{Qy, Q1,...Q,} exists (see [6]) consisting of subsets having arbitrarily small
diameter.

If one consider the symbolic dynamics , i.e. the labeled process on Q=
{0, ...p}7 defined by o = (o), , with oy, = 0 if S*2 € Q, , 0 € {0,...p} , k €
Z , x €T the S-invariant Lebesgue measure on the torus is codified into
a Gibbs measure on Z with a suitable potential ¢ on the space of symbols
Q) such that || @ ||= X rso(diamR) | (R) |< oo.

Moreover, the labeled process is isomorphic to a Bernoulli process .Hence,
ergodicity, mixing,

K property, positive entropy, the exponential decay of correlations follow
again ; also the central limit theorem follows (see also [1] , [2] , [10], [12],
[17] ) .From the central limit theorem we obtain an estimate in probability

for the speed of convergence in the ergodic theorem, or, equivalently, for the
discrepancy.

Indeed, if f : T¢ — R is an Holder-continuous function (not necessairly
with f = [ fd\ =

=0 ), putting g = f — f in theorem 3.2 , we obtain the asymptotic ap-
proximation of the process \/LN[Z]- f(S7x) — f] to the Gaussian distribution

N(f,Dy) , that is , V2 € R the inequality

| >y f(SFx) — f
VN

holds with probability approximately equal to

|< z

1 z u?
exp(———)du = P, , N large.
D ) p( 2D]%) g
Then | %Zk f(Skx) — f |< j—ﬁ with probability P, , which can be made

arbitrairly close to 1 , by taking a positive large enough value of z .

17



Therefore, with a large probability, we have :

1 - 1
|y D) = T I=0( )

f being an Holder-continuous function, and the discrepancy of our sequence
results Dy = O(ﬁ) , with a large probability.

Altough the result does not provide an almost surely estimate, it is perhaps
the better theoretic estimate that one can obtain. Moreover, the N =3 order
is confirmed by numerical results obtained by samples of sequences {z,,} (see

the graphs below) .
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4.

The program for the generation of pseudo-random sequences on the torus has
been realized exclusively by using variables of integer type. This because,
only if integer variables are used the sequences generated by the computer do
not differ by the theoretic ones (in the sense that computation errors are not
introduced). However, the disadvantage that we have by using numerical
data of integer type is given by the fact that these data have a bounded
range. Indeed, if a computer with 32 bits registers is used, the integer range
consists of the finite interval [—23" + 1,231 — 1].

Then, it is clear that to avoid overflow problems we have to make use of
integer valued variables with absolute value less than 23!

This constraint can be partially weakened, as we will see when the description
of algorithms for the generation of the pseudo-random sequence will be given
in detail. The algorithm stops when the point ¢, , under iteration of the map

S, returns to the initial value gz~50 = ¢.Then, the final value of j represents
the period of the sequence.
Now, we describe the algorithm, step by step.
(1)
In this step the initial vector ¢g = ¢ € T¢ is assigned . It is of the form :
o= (%, ....Z—Z) € T?, where p;, g;,i = 1, ...d are integer numbers such that :
a) pi < q Vi=1,..d;
b) ¢; is prime
¢) g # ¢ Vi # j. 5 N
Then the vector ¢ is trasformed into another vector ¢ given by : ¢ =
(%1 ..... 4) , where p; = H?:L#Z-piqj Q=TI ¢
Of course , Q) > p; ,Vi=1,....d.
The first condition to avoid overflow is

d
Q<2—1 de J[g<2® -1 (C1)
i=1
The reasons why the vector ¢ has been transformed into the vector ¢ will be
clarified in the following point (4) . Moreover, we shall see that the condition
(C1) is only one of the possible conditions which one might introduce to
avoid overflow problems. Indeed, the condition (C1) alone is not sufficient
to guarantee that such problems do not arise.
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(2)

In this step, the entries of the matrix T" are recorded. Also these data are of
integer type.

(3)

The integer variable j counts the number of iterations ;its final value contains
the number of iterations needed to reach the condition ¢; = o (that is 7 is
equal to the value of the period of the orbit with initial vector ¢ ).

(4)

The present step is certainly the most important one in the whole algorithm
. It is concerned with the realization of the transformation S , to generate
the sequence of pseudo-random vectors.

The j-th vector of the sequence is defined by :

(*)  ¢; =50 ;¢ =0 ,where S¢ =Td — [T]

As it is easy to see, every vector ¢; has the following form :

oj = (%, %) ,where a; < Q,Vi=1,..d
Denoting ¢;_ithe vector whose coordinates are the numerators of the coor-
dinates of the vector ¢;_;, the relation (x) can be written in the following
way :

(+x)  ¢; = Thj_1 (mod Q).

If we put ggj_l = (p1, ...-Pa), the transformation given by (x*) can be written

as : 3 B
(tllpl 4+ . + tldpd)

¢; = : (mod Q)
(tarp1 + «ooeee tadDd)
where (T);; =t , 4,7 =1,...d.
Turning back to the problem considered in step (1) , we have to impose
the technical conditions :

d
Ztijﬁj <2311 NVi=1,...d.
=1

In order that these conditions are satisfied, it is enough to suppose that:

dt;;Q < 2% — 1, (C2)
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where t;; = max; j—1, a{ti;} -
This because each addendum in the sum is less or equal to ¢;;Q). Thus ,
the pair of conditions (C1) and (C2) is sufficient to guarantee that overflow
problems do not arise.

Indeed, now we shall describe an alternative algorithm for which sufficient
conditions to avoid overflow are weaker than conditions (C1) and (C2).

As seen in the proposition 2.6 , the transformation S* can be written in
the form:

d
Sko =Y 55,
=1

where ¢ = (Z—i, ...Z—Z) and ¢ = (0, “'%’ ()) (see prop. 2.6) .
To determine the iterates of the vector ¢ under the transformation S , we
can alternatively solve the following system of congruences :

tllpgi) + . + tldpg)

S = | : | (mod ¢;)
tdlpgz) =+ ...... + tddpg)

where the quantities p§i) ,j = 1, ...d denote the numerators of the coordinates
of the vector obtained after the application of the transformation S to the
vector ¢ i =1, ..d.

In this way, sufficient conditions to avoid overflow became :
<2 -1 (1)
Giti;d < 2°1 — 1 (C?2)
where ¢; = max;—1_q4{¢:} and t;; = max; j—1_q4{t;;}.
Then, we have d vectors of numerators belonging to Z¢ , which have to be

divided for the corresponding denumerators and to be taken modulus 1. We
clarify all this with the following example. Example

Let us consider

We have



these vectors of denominator forming the initial matrix (of the denominators)

1 0
=y 1)

Then :

T(é) — <(1)) (mod2) andT((1)>

< 1 > (mod3) give the matriz P, = <O

1
1)
T (2) = (}) (mod2) and T (1) = (;) (mod3) give the matriz Py = (é
I11)

T(i) = <(1)) (mod2) andT(g> = <§> (mod3) give the matriz P; = (é

Iterating this procedure, we obtain at the 12" step the matrix

10
P12:(0 1):PO

Since P, = Py, the algorithm stops and the lenght of the period for the orbit
with initial value (3, %) is 12 .

To obtain explicitly the orbit, we have to divide each of the coefficients
of the j™ columnn of the matrix P for the denominator ¢; (in this case
q1 =2, ¢ =3 ).Finally , we have to sum (mod 1) all the entries of the i
row of P, , to obtain the coordinates of the vector S¥¢ , in decimal expansion.
Note that , only in the final step, we have used the floating point represen-
tation, while before we used integer arithmetic.

Here, the columns of the matrices at the right of each row represent the
vectors SFp®)

We observe that the conditions (C1’) and (C2’) represent constraints very
much weaker than (C1) and (C2) ; indeed, if the dimension d is large, it easily
may occur that ) = [[¢; is greater than 23 — 1 | since we have to choose
q; large enough, owing to the theory developed in section 2. Thus, in some
sense, the last algorithm results better than the former one , altough this is
to the prejudice of the velocity of execution.
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5. STATISTICAL TESTS

In this section we are concerned with statistical tests applied to the pseudo-
random sequences of vectors in [0, 1]% obtained as described before .

5.1 x? TEST

This is a test for checking the uniform distribution of the sequences, alterna-
tively to the estimation of the discrepancy (see section 3).

Let us consider a sequence (xy,..xx), z; = S'z, i = 1,..N and let
Ay, ...Ay be subsets of [0,1]% such that U¥_;A; = [0,1]4, A;NA; =0,V # j
, with A(A;) = ¢ ,i=1,..k.

Put p;, = % ;the quantities N,,,...IN,, represent the theoretical frequences,
that is V), = % Vi=1,.. .k
Put n, = card{z; : x; € A;} ;these quantities represent the ”empirical
frequences” . We define the index :

- (sz — ni)2
Tk ; N, :

In our case : .
k N
Tng =~ (= —n)2
Nk = 1;( 2 n;)
We compare Ty with the values of the y2-variable with (k-1) degrees of
freeedom (see e.g. [14]).Some examples .

()
We considered the matrix

()

1 1

and the corresponding sequence {S*z}i—; y with N = 10000 ;the square
[0, 1] has been partitioned into 9 squares of size %
The y2-test has been executed relatively to several choices of initial vectors.
In the worst case, we obtained x? = 2.57 ; from the table of x2 we obtain
Pr{x%>2.57} > 0.95 , so the sequences passed the test satisfactorily.

(I1)

We considered the matrix

N~
I
R
W Ot
CRCIIN



and the corresponding sequence {S*z};—; x with N = 100000 ;the square
[0, 1] has been partitioned into 27 squares of size %
Also in this case , relatively to several choices of initial vectors, we obtained

x*> = 16.75, in the worst case.From the table of x3s we obtain Pr{x%, >
16.75} > 0.90.
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5.2 RUN ALOW - BELOW TEST

Let us consider a partition of [0,1]¢ into two regions R; and Ry, such that
AMR;) = % . Of course, an infinite number of such partition exists ;we suppose
, for the sake of simplicity, that R; are regular, connected subsets.

If N is the lenght of the sequence, we put N; = the number of points
which belong to R; , ¢ = 1,2 , while r counts the number of times in which
the sequence jumps from a region to another.

Then, the statistic Z :

g Tk +1/2
o
where
5 2N1N3(2N;Ny — Ny — Ny) 2NN,
o° = = +1
N2(N;+ Ny — 1) N

is a standard Gaussian variable (see e.g. [9]). The sequence is retained to
pass the test if at least the 90% of its points generates values of z € [«, 7] ,
where « , # are such that Pr{z € [a, 5]} = 0.9 (z having a standard normal
distribution, we have a = —1.645 and = 1.645 ).In this way, we eliminate
the possibility to obtain suspect values as the ones assumed by the tails of
the normal distribution.

Some examples for the run alow test.

(1

We considered the matrix

and the corresponding sequences, with N=10000 .
Partitioning the cube [0,1]> by means of the plane z = %, we obtained the
following table

m =3 A= (—00,—1645) p, =0.05

ny =95 Ay = (—1.645,1.645) ps=0.9
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Partitioning the unit cube by means of the plane y = % , We obtained the
following table:

m =6 A= (—00,—1645) p, =0.05

ny =91 Ay =(—1.645,1.645) p, =0.9

ng =3 Ag=(1645,+00)  p;=0.05

Partitioning the unit cube by means of the plane z = 5 |, we obtained the

following table:

1
2

m =3 A= (—00,—1645) p, =0.05

ny =93 Ay =(—1.645,1.645) ps,=0.9

Thus, from these numerical data, we shall conclude that the sequences
generated by means of the matrix 7" pass the test satisfactorily.

(1)
We considered the matrix
()
2 1
and the corresponding sequence with N=10000.
Partitioning the square [0,1]? by means of the line z = 3, we obtained the
following table:

m =7 A= (—00,—1645) p; =005

ny =91 Ay =(—1.645,1.645) ps =0.9

Partitioning the unit square by means of the line y = %, we obtained the
following table:
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m =3 A= (—o00,—1.645) p; =005

ny =91 Ay =(—1.645,1.645) py =0.9

Also in this case, the test has been passed satisfactorily.
5.3 CORRELATIONS TEST

This test evidentiates possible correlations between the consecutive elements
of the generated sequence.

If x{ denotes the j-th coordinate of the vector x; of the sequence, we put
Y = xf — &, where T = 0.5.Then, set :

Zfiz?/i—lyi
Zf\il ?/12

where N is the length of the sequence.

It is well known that , for large N, z = v/NR is approximately normally
distributed (see e.g. [9]). Then, we can proceed to applying the test in
analogous way, as done in subsection 5.3.Example

R:

)
T=|2
2

W ot N
N W N

with N=10000.
Relatively to the first coordinate, one obtains the following table:

m =6 A, =(—00,—1645) p, =0.05

ny =89 Ay = (—1.645,1.645) py=0.9

ny=>5 Ag=(1.645,+00) p3 = 0.05

Relatively to the second coordinate, one obtains the following table :
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m =2 A= (—00,—1645) p; =005

ny =93 Ay =(—1.645,1.645) p, =0.9

Relatively to the third coordinate, one obtains the following table:

m =6 A= (—00,—1645) p, =0.05

ny =90 Ay = (—1.645,1.645) py=0.9

From these numerical data one can conclude that the matrix T generates
sequences of vectors having weakly correlated coordinates.
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