

BENCHMARKING FOR
THE QP

CRYPTOGRAPHIC SUITE

This work has been realized by the research team led by Prof. Giuseppe F. Italiano at the

Dipartimento di Informatica, Sistemi e Produzione, Università di Roma “Tor Vergata”. The team is

composed by Vittorio Ottaviani ,Antonio Grillo and Alessandro Lentini.

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

2

BENCHMARKING FOR THE QP CRYPTOGRAPHIC SUITE

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

3

SUMMARY

BENCHMARKING FOR THE QP CRYPTOGRAPHIC SUITE .. 2

SUMMARY .. 3

INTRODUCTION .. 4

TESTING PERFORMANCES OF CRYPTOGRAPHIC ALGORITHM IN MOBILE ENVIRONMENT ... 6

FULL PROCESS ANALYSIS ... 7

KEY EXCHANGE PROCESS TESTING .. 10

ENCRYPTION/DECRYPTION PROCESS TESTING .. 12

STATISTICALLY TESTING QP - DYN AND RC4 .. 17

REFERENCES ... 23

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

4

INTRODUCTION

In everyday life of European, US, Australian, and part of Asian and African cities (see Figure 1)

everybody holds a mobile device in his/her hands during the day for business or private reasons.

The penetration rate is rapidly growing every year.

Figure 1: 2007 world mobile device penetration [7].

This growing interest in mobility suggests that there will be the need of new more powerful

devices and, even more, technologies that allow people to use their mobile devices for working

and personal purpose, allowing to access the internet, or other services granting him/her a good

level of security, privacy and usability.

Offering security and privacy to users, at an acceptable level of usability, should allow a better

diffusion of new mobile services such as: mobile banking, home automation (domotics), mobile

internet, etc…

In order to ensure trust, security and privacy, there is a strong need for robust cryptographic

techniques comparable to those used in a desktop environment. However, these techniques do

not appear to be fully applicable in mobile devices, because cryptographic techniques are

computationally expensive and the resources currently available on mobile devices are simply not

enough to support sophisticated cryptographic algorithms.

The resource greediness of the currently available cryptographic algorithms mainly affects the

usability of the systems developed basing the security on standard algorithm. This motivates the

need of new algorithms capable of offering the same level of security as standard cryptographic

algorithms, but with less usage of resources.

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

5

The QP cryptographic suite is composed of two algorithms that allow the user to perform a

complete communication process made by a key exchange phase (over an unsecure channel,) and

a communication over an encrypted channel.

The two algorithms are:

1. QP-CONJ: used for the key exchange phase of the communication;

2. QP-DYN: used for the encryption/decryption phase of the communication.

The security of QP-DYN’s has been statistically tested and the results are available in the section

named Statistically testing QP - Dyn and RC4. These results do not prove that QP-DYN is

unbreakable; however they show that QP-DYN not only satisfies NIST requirements for classified

information but also it passes tighter and more robust tests, such as Rabbit, Alphabit

Pseudodiehard, FIPS-140-2 and Crush test batteries.

Since in a mobile environment the response time of an application using cryptographic algorithms

is of the utmost important for usability requirements, we evaluated the performance of QP-DYN

and QP-CONJ and compared it against standard algorithms performing similar tasks.

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

6

TESTING PERFORMANCES OF CRYPTOGRAPHIC ALGORITHM IN MOBILE ENVIRONMENT

We report here our performance tests of QP on a Nokia N70 platform. The NOKIA N70 is a

multimedia smartphone launched in Q3 2005. In 2007, it was the second most popular cellular

phone, with 8% of all sales at Rampal Cellular Stockmarket1. Our experiments show similar results

with other mobile devices.

NOKIA N70 is equipped with:

 CPU: TI OMAP 1710 220 MHz processor,

 OS: Symbian OS 8.1a , Series 60 UI operating system,

Java: MIDP 2.0 midlets.

1 "RCS Announces 2007 January-June Trading Data for the Global Cellular Phone Open Market",
retrieved on 2008-09-23.

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

7

FULL PROCESS ANALYSIS

The objective of using key exchange and encryption/decryption algorithms is to develop

applications that allow the user to exchange information privately. This means that there will be a

key exchange phase, a key agreement phase, an encryption phase, an information exchange phase

and a decryption phase.

We will call full process the sequence of operations composed by a sequence of basic operations:

key generation, key agreement and encryption/decryption for a selection of the best performing

configurations. For some processes: DH and AES, ECDH and AES, QP-CONJ and QP-DYN there is the

need to perform the key agreement phase, while for ECIES and RSA this phase is not required.

In Figure 2 we show the times required from some relevant tested solutions to perform the full

process. We can see that the difference in times required by RSA 1024 to perform a full process

compared with every QP performing the same operation are really important:

 35 milliseconds for QP;

 35 seconds for RSA.

Figure 2: Timing for key operations, encryption and decryption process for all the solutions tested in normal scale

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

8

In Figure 3 timing for the same solutions shown in Figure 2 are shown in this case the scale is

different, we choose to use the logarithmic scale to better illustrate the differences between the

different solutions tested.

Figure 3: Timing for key operations, encryption and decryption process for all the solutions tested in log scale

In Figure 4 the timing of the full process is shown for just some of the solutions tested. Note that

in Figure 4 time is represented in log-scale.

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

9

Figure 4: Comparison among all algorithms considered in mobile environment

For usability reasons, in a mobile environment, a time loss of 2 or 3 seconds spent in cryptographic

operations may be considered to be too “expensive”. For this reason, we present in Figure 5 only

the algorithms that run in less than 2 seconds. As it can be easily seen, QP seems to be the fastest

algorithm, even if it uses larger keys.

Figure 5: Comparison among usable algorithms considered in mobile environment

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

10

KEY EXCHANGE PROCESS TESTING

In this section we report the analysis performed just on the key management phases, here we

show the results of all the tests performed on common key agreement algorithm.

We compared the performance of QP-CONJ to other reference algorithms, such as Diffie-Hellmann

key exchange [8], Elliptic Curve Diffie-Hellman key exchange [15]. We remark that these

algorithms are the most used to perform key exchange operations in desktop and mobile

environments. Among the NIST suggested Elliptic Curves [6] we select both Koblitz curves (ending

with a “k” in Figure 6) and pseudo-random curves over GF(p).

In Figure 6 it is shown the time comparison between QP-CONJ, Diffie-Hellmann and Elliptic Curve

Diffie-Hellmann. We can note that QP-CONJ generates a key and a key agreement faster than the

others algorithms. Since in Figure 6 the difference in generation times for the secret and the key

agreement is not really appreciable, we illustrate in Figure 7 a closer look to show better the

differences in time.

Figure 6: Key and Key Agreement generation time comparison

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

11

While a key exchange using Elliptic Curve with a 571-bit key takes 5706.3 milliseconds, a key

exchange using QP-CONJ with a 5x5 matrix (775-bit key) takes only 20.63 milliseconds. This

difference is significant even considering that the key generated by QP-CONJ is 50% larger than

the Elliptic Curve key.

Even when considering the case of standard Diffie-Hellman, the differences in mobile environment

look quite impressive; for example, a Diffie-Hellmann 768-bit key is generated and agreed in

343.44 milliseconds while a QP-CONJ 775-bit key takes only 20.63 milliseconds. These differences

are illustrated in Figure 7.

Figure 7: Key and Key Agreement generation time comparison setting an upper bound to 1 sec.

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

12

ENCRYPTION/DECRYPTION PROCESS TESTING

In this section we show the results of the performance of QP-DYN in a mobile environment

compared to standard algorithms performing similar operations. We compare QP-DYN with RC4

and AES CFB Stream Cipher [9] [11] because both perform stream cipher operations as QP-DYN.

Figure 8: Overall encryption and decryption time comparison between RC4 512-bit and QP4

Figure 9: Overall encryption and decryption time comparison between RC4 768-bit and QP5

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

13

Figure 10: Overall encryption and decryption time comparison between RC4 1024-bit and QP5

In Figure 8, Figure 9 and Figure 10 the results of performance testing between QP-DYN and RC4 for

different key sizes are shown. Time performances shown in the figures are the sum of the

encryption and decryption times.

The sizes of the key tested are:

 512-bit for RC4 compared to QP-DYN with a 4x4 matrix for a total of 496-bit (Figure 8);

 768-bit for RC4 compared to QP-DYN with 5x5 matrix for a total of 775-bit (Figure 9);

 1024-bit for RC4 compared to QP-DYN with 6x6 matrix for a total of 1116-bit (Figure 10).

We observe that the time differences in the above figures are in the following ranges:

 From 15 up to 52 milliseconds for Figure 8;

 From 18 up to 45 milliseconds for Figure 9;

 From 37 up to 65 milliseconds for Figure 10.

The time differences are within the range 15-65 milliseconds and thus they do not affect

substantially the usability of QP-DYN compared to RC4. Furthermore, it is useful to remember that

RC4 is not considered secure (see also the results shown in “Statistically testing QP - Dyn and

RC4”).

We also compared performance results on mobile environments of QP-DYN with an AES

implementation performing Stream Cipher (AES CFB Stream Cipher). In particular, Figure 11

illustrates the results of a comparison between an AES CFB Stream Cipher implementation using a

256-bit key and QP-DYN with 3x3 matrixes (279-bit key).

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

14

In our experiments, the size of the plaintext where QP-DYN and AES take roughly the same time to

encrypt/decrypt was about 256 bytes. As it can be seen from the figure, the time differences

between AES CFB and QP-DYN are not dramatic:

 To encrypt/decrypt 32 bytes of plaintext AES CFB takes 22 milliseconds less than QP-DYN;

 To encrypt/decrypt 256 bytes of plaintext AES CFB and QP-DYN take the same time;

 To encrypt/decrypt 512 bytes of plaintext AES CFB takes 24 milliseconds more than QP-

DYN.

Figure 11: Overall encryption and decryption time comparison between AES CFB 256-bit and QP3

QP-DYN can be even used to perform Block Cipher operations so we compared it with AES in his

standard Block Cipher implementation. As AES has been designed to perform Block Cipher

operations the encryption/decryption times are better than the AES CFB. Figure 12 shows the

results of our experiments for a standard implementation of AES using a 256-bit key and QP-DYN

with a 3x3 matrix (279-bit).

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

15

Figure 12: Overall encryption and decryption time comparison between AES 256-bit and QP3

In particular:

 to encrypt and decrypt 32 bytes of plaintext AES takes 0.3 milliseconds while QP-DYN

28.25 milliseconds;

 to encrypt and decrypt 512 bytes of plaintext AES takes 4 milliseconds while QP-DYN 63

milliseconds.

We remark again that those time differences are very small (of the order of 60 milliseconds), and

thus they should not have any impact on the practical usability of QP.

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

16

Figure 13: Overall encryption and decryption time comparison between different QP key sizes

In Figure 13 the time performance of QP-DYN for different key sizes are shown; we notice that the

performance of QP-DYN appears to be stable on a larger key size range, from roughly 300 bits up

to roughly 4500 bits. Table 1 shows in more details the times needed to encrypt and decrypt

variable plaintext sizes using QP-DYN with different key sizes.

PLAIN
TEXT
SIZE

QP 3
(279)

QP 4
(496)

QP 5
(775)

QP 6
(1116)

QP 7
(1519)

QP 8
(1984)

QP 9
(2511)

QP 10
(3100)

QP 11
(3751)

QP 12
(4464)

128 36,55 24,69 24,69 45,02 22,35 25,01 20,77 45,62 27,66 26,88

256 44,99 36,39 34,53 54,54 34,21 34,53 32,65 56,11 38,43 38,6

384 55,33 49,23 45,01 65,45 46,22 44,85 45,77 65,3 47,81 49,37

512 63,75 60,31 53,88 74,39 59,21 54,53 57,5 75,31 57,66 61,26

Table 1: Overall encryption and decryption time in milliseconds for different QP key sizes and plaintext sizes

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

17

STATISTICALLY TESTING QP - DYN AND RC4

QP-DYN performs encryption and decryption in a stream cipher mode; in particular, it generates a

key-stream of the same size of the plaintext to be ciphered. This key-stream is XOR-ed with the

plaintext generating the ciphered text.

Such operations are the same as those performed by other stream cipher algorithms e.g., RC4

[10]. In 2005, Andreas Klein presented an analysis of the RC4 stream cipher, showing correlations

between the RC4 keystream and the key ([1], [5], [4]), and again in 2008 Klein presented a

successful attack on RC4 key-stream based on his 2005 work ([2], [3]). These works show that if

there are correlations in the key-stream generated from a stream cipher, the stream cipher itself is

reversible and can be statistically attacked recovering the key.

The National Institute of Standards and Technologies (NIST) sets the guidelines to verify a stream

cipher algorithm based on pseudo-random numbers generators (PRNG) [13]. A PRNG should

successfully “pass” some statistic tests in order to be usable to cipher classified information2.

These tests are a subset of other sets of tests used to discover correlations in bit sequences

generated from a PRNG. In Table 2 the tests required by NIST to use a PRNG for classified

information are shown.

FREQUENCY
(MONOBITS) TEST

The focus of the test is the proportion of zeroes and ones for the entire sequence. The
purpose of this test is to determine whether that number of ones and zeros in a
sequence are approximately the same as it would be expected for a truly random
sequence. The test assesses the closeness of the fraction of ones to ½, that is, the
number of ones and zeroes in a sequence should be about the same.

TEST FOR FREQUENCY
WITHIN A BLOCK

The focus of the test is the proportion of zeroes and ones within M-bit blocks. The
purpose of this test is to determine whether the frequency of ones is an M-bit block is
approximately M/2.

RUNS TEST The focus of this test is the total number of zero and one runs in the entire sequence,
where a run is an uninterrupted sequence of identical bits. A run of length k means
that a run consists of exactly k identical bits and is bounded before and after with a bit
of the opposite value. The purpose of the runs test is to determine whether the
number of runs of ones and zeros of various lengths is as expected for a random
sequence. In particular, this test determines whether the oscillation between such
substrings is too fast or too slow.

TEST FOR THE LONGEST
RUN OF ONES IN A
BLOCK

The focus of the test is the longest run of ones within M-bit blocks. The purpose of this
test is to determine whether the length of the longest run of ones within the tested
sequence is consistent with the length of the longest run of ones that would be
expected in a random sequence. Note that an irregularity in the expected length of
the longest run of ones implies that there is also an irregularity in the expected length
of the longest run of zeroes. Long runs of zeroes were not evaluated separately due to
a concern about statistical independence among the tests.

2 “Classified information is sensitive information to which access is restricted by law or regulation to particular classes of persons. A formal

security clearance is required to handle classified documents or access classified data. The clearance process requires a satisfactory background
investigation. There are typically several levels of sensitivity, with differing clearance requirements. This sort of hierarchical system of secrecy is
used by virtually every national government. The act of assigning the level of sensitivity to data is called data classification” Errore. L'origine
riferimento non è stata trovata..

http://en.wikipedia.org/wiki/Sensitive_information
http://en.wikipedia.org/wiki/Law
http://en.wikipedia.org/wiki/Class
http://en.wikipedia.org/wiki/Security_clearance
http://en.wikipedia.org/wiki/Secrecy
http://en.wikipedia.org/wiki/Nation
http://en.wikipedia.org/wiki/Government

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

18

RANDOM BINARY
MATRIX RANK TEST

The focus of the test is the rank of disjoint sub-matrices of the entire sequence. The
purpose of this test is to check for linear dependence among fixed length substrings of
the original sequence.

DISCRETE FOURIER
TRANSFORM (SPECTRAL)
TEST

The focus of this test is the peak heights in the discrete Fast Fourier Transform. The
purpose of this test is to detect periodic features (i.e., repetitive patterns that are near
each other) in the tested sequence that would indicate a deviation from the
assumption of randomness.

NON-OVERLAPPING
(APERIODIC) TEMPLATE
MATCHING TEST

The focus of this test is the number of occurrences of pre-defined target substrings.
The purpose of this test is to reject sequences that exhibit too many occurrences of a
given non-periodic (aperiodic) pattern. For this test and for the Overlapping Template
Matching test, an m-bit window is used to search for a specific m-bit pattern. If the
pattern is not found, the window slides one bit position. For this test, when the
pattern is found, the window is reset to the bit after the found pattern, and the search
resumes.

OVERLAPPING
(PERIODIC) TEMPLATE
MATCHING TEST

The focus of this test is the number of pre-defined target substrings. The purpose of
this test is to reject sequences that show deviations from the expected number of
runs of ones of a given length. Note that when there is a deviation from the expected
number of ones of a given length, there is also a deviation in the runs of zeroes. Runs
of zeroes were not evaluated separately due to a concern about statistical
independence among the tests. For this test and for the Non-overlapping Template
Matching test, an m-bit window is used to search for a specific m-bit pattern. If the
pattern is not found, the window slides one bit position. For this test, when the
pattern is found, the window again slides one bit, and the search is resumed.

MAURER'S UNIVERSAL
STATISTICAL TEST

The focus of this test is the number of bits between matching patterns. The purpose of
the test is to detect whether or not the sequence can be significantly compressed
without loss of information. An overly compressible sequence is considered to be non-
random.

LEMPEL-ZIV COMPLEXITY
TEST

The focus of this test is the number of cumulatively distinct patterns (words) in the
sequence. The purpose of the test is to determine how far the tested sequence can be
compressed. The sequence is considered to be non-random if it can be significantly
compressed. A random sequence will have a characteristic number of distinct
patterns.

LINEAR COMPLEXITY
TEST

The focus of this test is the length of a generating feedback register. The purpose of
this test is to determine whether or not the sequence is complex enough to be
considered random. Random sequences are characterized by a longer feedback
register. A short feedback register implies non-randomness.

SERIAL TEST The focus of this test is the frequency of each and every overlapping m-bit pattern
across the entire sequence. The purpose of this test is to determine whether the
number of occurrences of the 2m m-bit overlapping patterns is approximately the
same as would be expected for a random sequence. The pattern can overlap.

APPROXIMATE ENTROPY
TEST

The focus of this test is the frequency of each and every overlapping m-bit pattern.
The purpose of the test is to compare the frequency of overlapping blocks of two
consecutive/adjacent lengths (m and m+1) against the expected result for a random
sequence.

CUMULATIVE SUM
(CUSUM) TEST

The focus of this test is the maximal excursion (from zero) of the random walk defined
by the cumulative sum of adjusted (-1, +1) digits in the sequence. The purpose of the
test is to determine whether the cumulative sum of the partial sequences occurring in
the tested sequence is too large or too small relative to the expected behavior of that
cumulative sum for random sequences. This cumulative sum may be considered as a
random walk. For a random sequence, the random walk should be near zero. For non-
random sequences, the excursions of this random walk away from zero will be too
large.

RANDOM EXCURSIONS
TEST

The focus of this test is the number of cycles having exactly K visits in a cumulative
sum random walk. The cumulative sum random walk is found if partial sums of the
(0,1) sequence are adjusted to (-1, +1). A random excursion of a random walk consists
of a sequence of n steps of unit length taken at random that begin at and return to the
origin. The purpose of this test is to determine if the number of visits to a state within
a random walk exceeds what one would expect for a random sequence.

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

19

RANDOM EXCURSIONS
VARIANT TEST

The focus of this test is the number of times that a particular state occurs in a
cumulative sum random walk. The purpose of this test is to detect deviations from the
expected number of occurrences of various states in the random walk.

Table 2: Tests required by NIST to use a PRNG for classified information

As there is a lot of work about RC4 stream cipher cryptanalysis and about the correlations notable

in the key-stream generated, we decided to start analyzing the differences, noticed after

performing NIST tests, between RC4 and QP-DYN.

We tested RC4 and QP-DYN using the TestU01 [17] C library for statistical testing; this library

provides more tests than those required by NIST; moreover some of these tests are harder to be

passed.

The tests in TestU01 library are divided in some batteries: SmallCrush, BigCrush, Rabbit, Alphabit,

FIPS-140-2, pseudo DIEHARD. There is not a battery performing all the tests required by the NIST

but the tests are available in the library [9]; we implemented a battery of tests performing all the

tests required.

The results of our NIST test battery running for RC4 and QP-DYN algorithm are shown in Table 3: in

this table, the results for RC4 appear in the left column, while the results for QP-DYN appear in

the right column.

We report only one of all the runs performed, since all the runs performed, with different keys,

gave always similar results.

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

20

RC4 QP-DYN
========= Summary results of Nist =========

 Version: TestU01 1.2.2

 Generator: RC4

 Number of statistics: 60

 Total CPU time: 00:32:13.93

 The following tests gave p-values outside

[0.001, 0.9990]:

 (eps means a value < 1.0e-300):

 (eps1 means a value < 1.0e-15):

 Test p-value

 --

 1 HammingWeight2, r = 0 eps

 2 HammingWeight2, r = 20 eps

 3 HammingWeight2, r = 0 eps

 5 Run of bits, r = 0 eps

 5 Run of bits, r = 0 eps

 6 Run of bits, r = 20 eps

 6 Run of bits, r = 20 eps

 9 LongestHeadRun, r = 0 eps

 9 LongestHeadRun, r = 0 1 - eps1

 10 LongestHeadRun, r = 20 eps

 10 LongestHeadRun, r = 20 1 - eps1

 12 MatrixRank, 60 x 60 eps

 13 MatrixRank, 300 x 300 eps

 14 MatrixRank, 300 x 300 eps

 15 MatrixRank, 1200 x 1200 eps

 16 MatrixRank, 1200 x 1200 eps

 17 Fourier1 eps

 18 MultinomialBitsOver eps

 19 AppearanceSpacings, r = 0 1 - eps1

 20 AppearanceSpacings, r = 20 1 - eps1

 21 LempelZiv 1 - eps1

 22 LinearComp, r = 0 1 - eps1

 22 LinearComp, r = 0 1 - eps1

 24 RandomWalk1 H (L = 90) eps

 24 RandomWalk1 M (L = 90) eps

 24 RandomWalk1 J (L = 90) eps

 24 RandomWalk1 R (L = 90) eps

 24 RandomWalk1 C (L = 90) eps

 25 RandomWalk1 H (L = 90) eps

 25 RandomWalk1 M (L = 90) eps

 25 RandomWalk1 J (L = 90) eps

 25 RandomWalk1 R (L = 90) eps

 25 RandomWalk1 C (L = 90) eps

 26 RandomWalk1 H (L = 1000) eps

 26 RandomWalk1 M (L = 1000) eps

 26 RandomWalk1 J (L = 1000) eps

 26 RandomWalk1 R (L = 1000) eps

 26 RandomWalk1 C (L = 1000) eps

 27 RandomWalk1 H (L = 1000) eps

 27 RandomWalk1 M (L = 1000) eps

 27 RandomWalk1 J (L = 1000) eps

 27 RandomWalk1 R (L = 1000) eps

 27 RandomWalk1 C (L = 1000) eps

 28 RandomWalk1 H (L = 10000) eps

 28 RandomWalk1 M (L = 10000) eps

 28 RandomWalk1 J (L = 10000) eps

 28 RandomWalk1 R (L = 10000) eps

 28 RandomWalk1 C (L = 10000) eps

 29 RandomWalk1 H (L = 10000) eps

 29 RandomWalk1 M (L = 10000) eps

 29 RandomWalk1 J (L = 10000) eps

 29 RandomWalk1 R (L = 10000) eps

 29 RandomWalk1 C (L = 10000) eps

 --

 All other tests were passed

========= Summary results of Nist =========

 Version: TestU01 1.2.2

 Generator: QPDyn

 Number of statistics: 62

 Total CPU time: 04:00:07.85

 All tests were passed

Table 3: Summary of NIST’s test passed by RC4 and QP

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

21

As it can be easily seen, RC4 does not pass some tests, while QP-DYN passes all the tests required

by NIST. Moreover while QP-DYN does not show correlations in the keystream generated, RC4

does it in a very short time if compared with the QP-DYN times (Total CPU time for RC4 =

00:32:13.93, Total CPU time for QP-DYN = 04:00:07.85). In every run performed, RC4 failed always

the same tests, while QP-DYN always passed all the tests performed.

We tested QP-DYN even using standard test batteries that are harder to be passed; these batteries

are provided by the TestU01 library (see Table 4). We report here some interesting findings:

 Some of the tests performed in the TestU01 library batteries sometimes are not passed.

However, while RC4 fails always on the same tests, QP-DYN fails tests in a non-predictable

way.

 Some keys in QP-DYN generate a keystream that passes all statistical tests in all batteries;

this suggests that when QP-DYN is initialized with “strong3” keys the keystream generated

seems to be much more robust.

The results of the tests performed give a clear indication that QP-DYN, when used properly with

strong keys, is a very strong and robust stream cipher.

3 QP implementation provides mechanism for determining if a generated key can be “safely”
adopted by QP-Dyn. If a key seems not to be safe the mechanism modifies the starting matrix (i.e.
the key) until the expected properties are satisfied.

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

22

ITERATION

BATTERY

1 2 3 4 5

RABBIT
Multinomial

BitsOver
none Multinomial

BitsOver
none RandomWalk1

ALPHABIT none none none none none

PSEUDODIEHARD none none none none none

FIPS-140-2 none none none none none

CRUSH none none none none none

ITERATION

BATTERY

6 7 8 9 10

RABBIT
Multinomial

BitsOver
Multinomial

BitsOver
none ClosePairs

BitMatch
none

ALPHABIT

none none none Multinomial
BitsOver

RandomWalk1

none

PSEUDODIEHARD

OPSO none OPSO

ClosePairs

MatrixRank

OPSO

OQSO

MatrixRank

DNA

FIPS-140-2 none none none none none

CRUSH

Hamming
Corr

none ClosePairs

ClosePairs
BitMatch

Run

RandomWalk1 Birthday
Spacings

RandomWalk1

LinearComp

HammingWeight2

Table 4: Results on test batteries provided by TestU01 library run on QP keystream

B
eN

C
H

M
A

R
K

IN
G

 F
O

R
 T

H
E

Q
P

 C
R

YP
TO

G
R

A
P

H
IC

 S
U

IT
E

23

REFERENCES

[1] Andreas Klein, Angriffe auf RC4; Tagung der Fachgruppe Computeralgebra 2005, Kassel

[2] Andreas Klein, Attacks on the RC4 stream cipher; Designs, Codes and Cryptography 48(3),

2008

[3] Andreas Klein, Different Attacks against the RC4 stream cipher; Proceeding of the contact

form, 2008, Brussels

[4] Andreas Klein, Härten von RC4 artigen Cryptosystemen; CRYPTO-TAG 2006, Bochum

[5] Andreas Klein, Zur Sicherheit von RC4; CRYPTO-TAG 2005, Darmstadt

[6] Certicom Research, Standards for efficient cryptography, SEC 1: Elliptic Curve Cryptography,

Version 1.0, 2000

[7] Digital Opportunity site, Differences in the use of infrastructure (international);

http://www.dosite.go.jp/e/do/in-state_infra.html

[8] E. Rescorla, RFC 2631 - Diffie-Hellman Key Agreement Method, 1999

[9] FIPS, FIPS PUB 197: the official AES standard, 2001

http://www.iro.umontreal.ca/~simardr/testu01/guideshorttestu01.pdf

http://www.mozilla.org/projects/security/pki/nss/draft-kaukonen-cipher-arcfour-03.txt;

[10] K.Kaukonen, R.Thayer, A Stream Cipher Encryption Algorithm "Arcfour”, 1999

[11] Morris Dworkin, Recommendation for Block Cipher Modes of Operation Methods and

Techniques, NIST, 2001

[12] NIST, NIST IR 7298, Glossary of Key Information Security Terms; Richard Kissel editor, 2006

[13] NIST, Random number generation; http://csrc.nist.gov/groups/ST/toolkit/rng/index.html

[14] NIST, Recommended Elliptic Curves for Federal Government Use, 1999

[15] NIST, Special Publication 800-56A, Recommendation for Pair-Wise Key Establishment

Schemes Using Discrete Logarithm Cryptography, 2006

[16] Pierre L’Ecuyer and Richard Simard, TestU01 A Software Library in ANSI C for Empirical

Testing of Random Number Generators User’s guide, compact version (pp 156-157), 2009

[17] Pierre L’Ecuyer and Richard Simard, TestU01;
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html;

http://cage.ugent.be/~klein/RC4
http://cage.ugent.be/~klein/papers/RC4-en.pdf
http://cage.ugent.be/~klein/papers/RC4-overview.pdf
http://www.dosite.go.jp/e/do/in-state_infra.html
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html

