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1. Strongly asymmetric PKA algorithms

In Public Key Agreement (PKA) algorithms two interlocu-

tors A and B produce a secret shared key (SSK) by exchang-

ing public information and combining it with private one.

Such cryptographic algorithms are called asymmetric be-

cause the private informations possessed by A and B are

different and not shared.

However the operations performed by A and B, to con-

struct the secret shared key (SSK), are quite similar.

In the present talk a new method to construct PKA algo-

rithms is discussed in which this residual form of symmetry

is eliminated, hence the name: strongly asymmetric PKA

algorithms.

Rather than a new class of PKA algorithms, the method

yields a machine to produce PKA algorithms.

The main new features of this new class of PKA algorithms

are the following:

– Recipient public keys are distinguished from sender public

keys

– B (the receiver) has more than one public key (multiple

public keys)

– The unique public key used by A (the sender) depends

on those of the recipient.

The splitting of the public information into multiple public

keys implies levels of:

– security

– flexibility

– variety of concrete realizations

which cannot be found in the standard PKA algorithms.

The construction of these algorithms does not depend on so-

phisticated mathematical structures (e.g. groups associated

to elliptic curves or complex theorems of number theory).

This implies a drastic decrease in implementation complex-

ity and increase in velocity.

The present scheme has been submitted for patent (joint with

Massimo Regoli, No. RM2011A000062, 11/02/2011).
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1. 1 Notations and Public Ingredients

Let N be the natural integers, P, a semigroup (noted mul-

tiplicatively, with 1) and α ∈ P, an element of P which is the

(commutative) semigroup generated by α: P0(α) ≡ P0(α) :=

{αn : n ∈ N}⊂=P
1. 2 Steps of the algorithm

Step (0) B (the receiver) constructs the following maps:

NB,1 : P → P easily invertible map

NB,3 : P → P easily invertible map

x̂B,1 , x̂B,2 , x̂B,3 , x̂B,4 : P → P

arbitrary functions satisfying the compatibility conditions

x̂B,1x̂B,2|P0 = x̂B,3x̂B,4|P0

NB,1x̂B,2|P0 is an homomorphism : P0 → P

Step (1) Using the functions constructed in Step (0), B con-

structs:

(i) The Secret Key of B, i.e. the function:

x̂B := x̂B,3NB,3

(ii) The Public Keys of B, i.e. the functions:

x̂B,1N
−1
B,1

N−1
B,3x̂B,4

and the element of P

NB,1x̂B,2(α)

Step (2) B sends his public keys to A

Step (3a) A chooses her Secret Key: a natural integer xA ∈
N.

Step (3b) using α, xA and the public key N−1
B,3x̂B,4 of B, A

computes her public key: N−1
B,3x̂B,4(α

xA) =: yA

Step (4): A sends her public key yA to B.

Step (5): Computation of the SSK: κ = xB,1xB,2(α
xA) =

xB,3xB,4(α
xA)

Step (5A): A computes:

xB,1N
−1
B,1[NB,1xB,2(α)]xA = xB,1N

−1
B,1[NB,1xB,2(α

xA)]

= xB,1xB,2(α
xA)

= κ

Remark Notice that, in order to calculate κ, A uses public

keys of B different from the one used to produce yA.

Step (5B): B computes

x̂B(yA) = xB,3NB,3(yA)

= xB,3NB,3(N
−1
B,3xB,4)(α

xA)

= xB,3xB,4(α
xA)

= κ

2. Scalar toy model (1)

Public ingredients:

– Any field F in which, for each x ∈ F, the computation of

x−1 is efficient. A typical choice is F = Zp

– an element A ∈ F (A is denoted α in the abstract scheme).

Step (0): Definition of the functions

Fix x1, x2, x3, x4 ∈ F and define:

x̂B,2(y) := yx2

x̂B,1(y) := yx1

x̂B,3(y) := yx3

x̂B,4(y) := yx4

NB,1 := id

NB,3 := id

1–st Compatibility condition:

x̂B,1x̂B,2(y) = x̂B,1(y
x2)

= (yx2)x1

= yx2x1

x̂B,3x̂B,4(y) = x̂B,3(y
x4)

= (yx4)x3

= yx4x3

This gives the easily satisfiable condition:

x̂B,1x̂B,2 = x̂B,3x̂B,4 ⇔
x1x2 = x3x4 =: x̄

2–d Compatibility condition:

NB,1x̂B,2(A
n) = x̂B,2(A

n)

= (An)x2

= Anx2

= (Ax2)n

= (xB,2(A))n

= NB,1x̂B,2(A)n

Thus NB,1x̂B,2|P0 is an homomorphism, as required.

Public Keys of B:

x̂B,1N
−1
B,1(y) = x̂B,1(y)

= yx1

N−1
B,3x̂B,4(y) = N−1

B,3(y
x4)

= yx4

NB,1x̂B,2(A) = x̂B,2(A)
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= Ax2

Secret Key of B:

x̂B(y) = x̂B,3NB,3(y) = yx3

Thus to give the function x̂B is equivalent to give the number

x3.

Secret Key of A:

xA ∈ N

Public Key of A:

yA = N−1
B,3x̂B,4(A

xA) = AxAx4

A constructs the SSK:

xB,1N
−1
B,1[NB,1xB,2(A)]xA = xB,1[xB,2(A)]xA

= xB,1xB,2(A
xA)

= AxAx1x2

= κ

B constructs the SSK:

x̂B(yA) = x̂B(AxAx4)

= AxAx4x3

= κ

The SSK is the same because of the compatibility condition

x1x2 = x4x3.

Breaking complexity

The eavesdropper, called Eve (E) knows the public param-

eters and the public keys:

A ∈ F ; x1 ∈ F ; x4 ∈ F ; Ax2 ∈ F ; yA = AxAx4 ∈ F

If E can compute the logarithm in F, then she can recover

xAx4 = lgAyA. Since E knows x4, she recovers xA knowing

Ax2 , x1, xA, she can compute the SSK

(Ax2)xAx1 = AxAx1x2 = κ

Thus the breaking complexity of this algorithm is equivalent

to the logarithm in F. This means that the above toy realiza-

tion does not bring a real gain with respect to the standard

PKA algorithms.

2. 1 A strongly asymmetric version of the Diffie–

Hellman algorithm

The public keys of B are

yB,1 := aαxB

yB,2 := ax−1
B α

The secret key of A is: xA ∈ N.

The public key of A is: yA := yxA
B,2.

Finally the SSK κ is: κ := axAαxAxB .

A computes the SSK using yB,1: yxA
B,1 = (aαxB )xA =

axAαxAxB .

B computes the SSK using yA: yxB
A = (axAx−1

B αxA)xB =

axAαxAxB = κ.

2. 2 The Diffie–Hellman algorithm

The Diffie–Hellman algorithm is recovered by choosing

a = 1, which gives

yB,1 =: yB := αxB

yB,2 = α

yA = αxA

κ = αxAxB

3. Beyond the discrete logarithm: a sim-
ple example

B fixes the following functions:

– A polynomial of degree n

Qn(y) =

n∑
j=0

ajy
j ; aj ∈ F , j ∈ {0, 1, . . . , n}

– A polynomial of degree 1

P2(y) := a2y + b2 ; a2, b2 ∈ F

– Two natural integers and a scalar

NB,3 , n2 ∈ N \ {0}

xB,3 ∈ F

With these ingredients B constructs:

x̂B,2(y) = P2(y
n2) = a2y

n2 + b2

x̂B,3(z) = zxB,3

x̂B,4(y) = cQn(y) = c

∑n

j=0
ajyj

N̂B,3(z) = zNB,3

N̂B,1 = P−1
2 ⇔ N̂−1

B,1 = P2

x̂B,1(z) = c
xB,3Qn(

(
z
a2

− b2
a2

)n
−1
2 )

This choice satisfies the compatibility conditions:

x̂B,3x̂B,4(y) = cxB,3Qn(y) = x̂B,1x̂B,2(y)

x̂B,1x̂B,2 = x̂B,3x̂B,4

Public Keys of B: the public parameter α and

N̂B,1x̂B,2(α) = P−1
2 P2(α

n2) = αn2

N̂−1
B,3x̂B,4(y) =

n∏
j=0

(c
N−1

B,3aj )yj
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B sends to A the n + 1 numbers: N̂−1
B,3x̂B,4 ≡

(c
N−1

B,3an , . . . , c
N−1

B,3a0).

x̂B,1N̂
−1
B,1(y) =

n∏
j=0

(cxB,3aj )y
jn

−1
2 ⇔

x̂B,1N̂
−1
B,1 ≡ (c

N−1
B,3an , . . . , c

N−1
B,3a0 , n2)

Public Key of A

yA = N̂−1
B,3x̂B,4(α

xA) =

n∏
j=0

(c
N−1

B,3aj )(α
xA )j

SSK

κ = x̂B,1x̂B,2(α
xA) = x̂B,3x̂B,4(α

xA) = cxB,3Qn(αxA )

Breaking complexity : Taking the following n + 2 loga-

rithms

log α , log c
N−1

B,3an , . . . , log c
N−1

B,3a0

E reduces the problem to the algebraic equation

log yA =

n∑
j=0

(log c
N−1

B,3aj )(αxA)j

of degree n in the unknown y = αxA . E knows:

– the coefficients of the equation

– that at least one solution in the field F exists.

Therefore E has to:

– find all solutions of this equation in F
– for each of them (at most n) compute the logarithm

log αxA .

From this she deduces a possible candidate for xA:

xA =
log αxA

log α

After that, she proceeds by exhaustive search.

Comparative complexity : Supposing zero cost for:

– the logarithms

– the exhaustive search,

then the breaking complexity is equivalent to find all the

roots in the finite field F of the algebraic equation of degree

n with coefficients in F. No general solution method is known

for n >= 5.

4. Conclusions

Many non toy realizations of the general scheme have been

constructed. They are structurally different: not variants of

each other. The emphasis of the present talk is on the unlim-

ited potentiality of realizations which are apparent already

from the (simplest) scalar models. The non scalar models

are much richer in structures and possibilities and for some

of them the breaking complexity is at the moment unknown.
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