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1. Introduction

1. 1 Description

Let us start with some important definition about the

Strongly Asymmetric PKA Algorithms.

• Public information is split among multiple public

keys

• B (the receiver) has one set of public keys

• The unique public key used by A (the sender) de-

pends on those of the Receiver.

• security

• flexibility

• variety of concrete realizations which cannot be found

in the standard PKA algorithms.

1. 2 Implementation

The implementation is:

• easier to implement

• quicker.

So let us start with a general description (see [1])

• Public Ingredients

– N, the natural integers

– P, a semigroup (noted multiplicatively, with 1)

– α ∈ P, an element of P

{N ; P ; α}

Notations:
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P0(α) := {αn : n ∈ N}⊂=P

the (abelian) semigroup generated by α.

Mor(P0(α),P) := {π : P0(α) → P :

π(1) = 1 ; π(xy) = π(x)π(y) ; ∀x, y ∈ P0(α)}
Typical example (P0(α) is commutative)

x ∈ P0(α) 7→ π(x) = SxMS−1

S is any invertible element in P.

1. 3 Secret ingredients of Receiver

• NB,1 : P → P easily invertible map

• NB,3 : P → P easily invertible map (not morphism)

• xB,1, xB,2, xB,3, xB,4 : P → P
arbitrary functions satisfying the compatibility condi-

tions:

• xB,1xB,2|P0 = xB,3xB,4|P0

• NB,1xB,2|P0(α) ∈ Mor(P0(α),P)

Using these secret ingredients, B constructs his secret and

public keys.

2. The protocol

Now using the above ingredients we can construct am en-

tire protocol for key exchange in some steps (see figure (1))

3. The matrix version

In order to estimate the robustness of the algorithm, we

begin to study one of its simplest realizations, i.e. most fa-

vorable for the attacker E.

This will give a lower limit for the breaking complexity of

the algorithm.

3. 1 The public ingredients

P := Md(F) =: d × d matrices =: Md (1)

α ∈ Md (2)

with a long period.

Explicit algorithms to construct such α are known.

3. 2 Secret ingredients of Receiver

π1(x) := ax + b ; a, b ∈ F (3)

π2(x) := P2x
NP−1

2 ; x ∈ Md (4)

where P2 is an invertible element in Md and N ∈ N,

σ := id (5)

図 1 PKD diagram

ρ(x) := AxB−1 + C (6)

where A, B are invertible elements in Md.

πq(y) :=

M∑
H=0

aHyHbH (7)

where

aH , bH ∈ Md ; M ∈ N (8)

3. 3 Comments on the above choices

ρ(x) := AxB−1 + C

is invertible and its inverse is
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ρ−1(z) := A−1(z − C)B (9)

In the definition of

π1(x) := ax + b ; a, b ∈ F

a and b they can also be matrices. In fact, if we want π1 not

invertible and nontrivial, then a must be a matrix. If a is

invertible, then π1 is easily invertible and its inverse is

π−1
1 (y) := a−1y − a−1b (10)

However, in order to further simplify the model, we choose

a,b to be scalars.

With these choices the secret key of Receiver is the func-

tion:

x̂B := πqρ
−1 = πq(A

−1( · − C) )B)

3. 4 Public Keys of Receiver

With the above choices, Sender should receive the public

keys of Receiver, that is α and the functions:

πqπ1σ
−1(x) = πq(ax + b) =

=

M∑
H=0

aH(ax + b)HbH (11)

ρπ1π2(x) = AaP2x
NP−1

2 B−1 + AbB−1 + C (12)

σπ2(α) = π2(α) = P2α
NP−1

2 (13)

Notice that ρ is invertible and its inverse is

ρ−1(z) := A−1(z − C)B (14)

Remark. In (3), a and b can also be matrices.

In fact if we want π1 to be non invertible, they have to be

matrices.

If a is invertible, then π1 is easily invertible and its inverse

is

π−1
1 (y) := a−1y − a−1b (15)

3. 5 Structure of the public data of the Sender

Receiver sends σπ2(α) to Sender. Knowing this Sender is

able to compute:

σπ2(α)xA = (P2α
NP−1

2 )xA = P2α
NxAP−1

2 (16)

The public key of A is given by

yA = ρπ1π2(α
xA) = (ρπ1σ

−1)(σπ2(α)xA) =

= A(aP2(α
xA)NP−1

2 + b)B−1 + C =

= A(aP2α
NxAP−1

2 + b)B−1 + C =

= AaP2α
NxAP−1

2 B−1 + AbB−1 + C =

= Aa(P2α
NP−1

2 )xAB−1 + AbB−1 + C =

= Aa(σπ2(α))xAB−1 + AbB−1 + C (17)

3. 6 Structure of the public data of Receiver (first

part)

In order to allow Sender to create her public key Receiver

uses the identity

yA = Aa(π2(α))xAB−1 + AbB−1 + C

and sends to Sender the matrix (d2 numbers):

AbB−1 + C ∈ Md (18)

and the map

z ∈ Md 7→ AazB−1

This means that Receiver sends to Sender the d4 + d2 num-

bers:

Xij;j1j2 := (Aa)ij1(B
−1)j2j (19)

(AbB−1)ij + Cij

i, j, j1, j2 ∈ {1, . . . , d}
(20)

3. 7 Computation of the SSK

κ = πq(a(P2α
NxAP−1

2 ) + b) = (21)

=

M∑
H=0

aH(a(P2α
NxAP−1

2 ) + b)HbH

Since a, b are numbers, πqπ1σ
−1(x) is equal to

M∑
H=0

aH

H∑
J=0

(
H

J

)
aJbH−JxJbH =

=

M∑
H=0

H∑
J=0

(
H

J

)
aJbH−JaHxJbH

Therefore the SSK is

M∑
H=0

H∑
h=0

aHahP2α
NxAhP−1

2 bH−h

(
H

h

)
bH = (22)

=

M∑
H=0

H∑
h=0

aHah(P2α
NP−1

2 )xAhbH−h

(
H

h

)
bH

Knowing xA:

• in order to compute (16) and (17), Sender needs only

to know

P2α
NP−1

2 (23)

• in order to compute (17), Sender needs only to know

α ; AbB−1 ; N (24)

AaP2X ; X−1P−1
2 B−1 (25)
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where X is any invertible element in the commutant of the

algebra generated by α.

• in order to compute (21), Sender needs only to know

aHahP2µ(H, h)Y ; Y −1P−1
2 bH−hν(H, h)bH (26)

where Y is any invertible element of the algebra generated

by α and µ(H, h), ν(H, h) are arbitrary natural integers such

that

µ(H, h)ν(H, h) =

(
H

h

)
(27)

4. The implementation

The present computer implementation of the matrix ver-

sion of the algorithm is based on C++ language.

So, in the logic of object-oriented programming, we started

to fix some abstract properties and methods of the base

classes.

First, we realized that, within a namespace ’container ’, we

had to create two main classes:

• Sender class

– This class will contain derived abstract methods and

’proprietary’ methods for Sender

• Receiver class

– This class will contain derived abstract methods and

’proprietary’ methods for receiver

In both classes the idea was to fix a common interface for

new implementations for others models in order to obtain a

single communication protocol between applications and the

classes libraries.

It is clear that some specific properties, methods and spe-

cial classes should be included in the main namespace or

classes depending on the circumstances (i.e. from the model).

namespace DP {

// Standard virtual classes

class Receiver {

...

}

class Sender {

...

}

// Proprietary classes

};

the minimum number of properties are set to:

namespace DP {

template <class SSK, class SecA>

class Sender {

public:

virtual void Initialize(void) = 0;

virtual SSK getPublicKey() = 0;

virtual SSK getSecretKey(void) = 0;

virtual void setSecret(SecA x) = 0;

virtual void setSecret(string s) = 0;

virtual void setPublic(string s) = 0;

virtual string publicToString(void) = 0;

virtual int stringToPublic(string s) = 0;

virtual void reset() = 0;

};

template <class SSK, class SecA>

class Receiver {

public:

virtual void Initialize(void) = 0;

virtual void setSecret(string s) = 0;

virtual SSK getSecretKey(SSK yA) = 0;

virtual SSK getSecretKey(string s) = 0;

virtual string publicToString(void) = 0;

virtual void reset() = 0;

};

}

}

Following this abstract class we can write:

DP::Sender S;

DP::Receiver R;

string secS, secR, SSKS, SSKR;

S.Initialize();

R.Initialize()

///

/// Create secret info for Receiver

/// in some way...

///

R.setSecret(secR);

///

/// Create secret info for Sender

/// in some way...

///
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S.setSecret(secS);

S.setPublic(R.publicToString());

/// SSKS == SSKR

SSKR = R.getSecretKey(S.publicToString());

SSKS = S.getSecretKey();

/// Reset ALL

S.reset(); R.reset();

4. 1 Problems in key exchange

d M bytes

2 5 448

3 5 2088

4 5 6400

5 5 15400

6 5 31680

7 5 58408

8 5 99328

9 5 158760

10 5 241600

表 1 Size of public keys of Receiver

In the matrix model the first problem we encountered was

about the two maps that Receiver must send to Sender (for

example see (19)).

In fact, we can’t send the individual ingredients (the ele-

ments) of the maps (which are, in our case, the secret matri-

ces of Receiver), but, rather, the final coefficients obtained by

a symbolic calculation of the relative formulas and that are

directly connected with the arguments passed to the maps.

In this way, given the complexity of the calculation, you

can not go back to the original matrices

So Receiver can sends to Sender all these information just

to compute his public informations and the relative shared

secret key without being familiar with the secret ingredients

of Receiver.

Unfortunately, this strategy has a small problem in the

matrix model implementation: the size of the public infor-

mations of Receiver.

In fact after some simple calculations we obtain that the

cardinality of the sets of the numbers that Receiver has to

send to Sender is strongly depending on the size of the ma-

trices d and it is equal to:

|PubK | = 4d2 + Md4 + d4

in terms of byte (assuming that a number is represented by

4 bytes):

|PubK |b = 4(4d2 + Md4 + d4)

the tables (1), shows this trend.

However the public key of Receiver must be transmitted

only once. Notice that it is sufficient that Sender changes his

secret key and sends its new public key to Receiver to obtain

a new SSK.

In this case the size of the public key of Sender in terms

of bytes is smaller:

4d2

(see table (2)).

d PK bytes SK bytes

2 16 16

3 36 36

4 64 64

5 100 100

6 144 144

7 196 196

8 256 256

9 324 324

10 400 400

表 2 Size of public key of Sender and of the SSK

5. Data format

5. 1 Receiver

The next step is to create a transmission protocol between

Sender and Receiver.

Let us recall that Receiver must send a lot of numbers

to Sender (see table (1)) and Sender must return only few

numbers (see table (1)) to Receiver.

In addition, the Receiver also decides:

• the size of the key (i.e. the dimensions of the matrices)

• the prime number

• and the degree of the polynomial (7)

So the first packet should be as in figure (5. 1) where:

• d is the dimension of the matrices

• M is the degree of polynomial (7)

• and p is the prime number

図 2 Matrix Model Header

But, in order to underline, here, the strength of the

Strongly asymmetric PKA family, we will also put in the

header the algorithm chosen.

In fact the Receiver can choose (if both, Sender and
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Receiver, can agree on a common implementation of the

Strongly asymmetric PKA algorithms) the method T that

implements the general algorithm and then he will create a

more complex header like the one in figure (5. 1) that, of

course, depends on the method T .

図 3 General Header

The dimension and format of the Packet depends on:

• The method T

• Some further specialization in Header(T )

In the Matrix Model the Packet depends on d (the dimen-

sion of the matrices) and from M (the degree of polynomial

(7). With these choices the size of the packet will be exactly

represented by table (1).

In our case we organize the packet in the following order:

• alpha

• First Public Matrices (i.e. matrix (18))

• Second Public Matrices (i.e. matrix (23))

• First Map (i.e. coefficients of map (19)) (this is a vec-

tor)

• Second Map (i.e. coefficients of map (22)) (this is a

vector)

• Third Public Key (i.e. constant matrix in the

map(22))

5. 2 Sender

From the Sender point of view, in the Matrix Model, all

parameters were already set by the Receiver, so we would

not need to use an header, but just to avoid mistake and

error in programming we can create a header that contains

a copy of the information of the Receiver.

But, as a consequence of the fact that:

• The Strongly asymmetric PKA algorithms family is

very new

• We have no idea of the actual amount of possible im-

plementations

• New implementations may require some choices even

by Sender

then, we decided to provide also the Sender of a complex

header that, in the case of Matrix Model is simple (see fig-

ure (5. 1) but in general case is the one represented in figure

(5. 2).

6. Conclusion

In this work we introduced a particular class of the strongly

asymmetric PKA algorithms.

図 4 Sender General Header

This implementation, based on matrices has shown:

• a remarkable production speed of public and secret

keys (see table (6.) or figure (6.)),

• ease of use (the secret ingredients Some are easy to

fix),

• enormous versatility (possibility to change the dimen-

sion of the matrices, the degree of the polynomial , and the

prime number)

Remark: As an explanation of table (6.) we have to say

that the calculation includes the following activities:

（ 1） Production of Public info of Sender

（ 2） Production of Secret info of Receiver

（ 3） Production of Secret info of Sender

From a detailed analysis of the cycle of distribution an im-

portant result emerges. This is described in table (6.), where

we can see that the most part of the activity is due by the

Sender (ca 90% of the total activities) and only 10 % by the

Receiver.

This is crucial, especially in those activities in which one of

the interlocutors is a device with low computing power (i.e.

cellular phone and other small devices).

in this case if the device with low computing power should

play the role of Sender, the Sender itself will sends a message

to Receiver to request it to start, in this way he reverses the

roles in the communication.

As soon as the true sender will receive the key necessary

for the production of the secret key, the normal communica-

tion starts.

Obviously, in order to implement this scenario, the part-

ners must have already exchanged the basic public informa-

tion.

d seconds PK / sec

4 1 1000

5 2.1 476.1904762

6 4.2 238.0952381

7 6.8 147.0588235

8 10.9 91.74311927

9 15.29 65.40222368

10 21.34 46.86035614

表 3 Production speed of 1000 secret keys (once established and

exchanged the public keys of the Sender)
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図 5 Number of secret keys generated in one second

% Pub. S. % SSK S. % SSK R.

15 75 10

表 4 Time of production key in percentage of Sender and Receiver

Activities

7. Next Steps

Our intention for the future is:

• Complete the implementation of the Matrix Model by

introducing new features

– For example introducing the opportunity to create

more than on secret matrices for each exchange using more

than one Sender secret key

– this doubles the size of the public information of the

Sender but also doubles the size of the secret shared key

• Collecting new alternative methods based on mathe-

matical tools

• Improving the transmission protocol

• Statistically analyze the keys produced to demonstrate

the inviolability also statistical attacks
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