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Plan of the present talk

1) Introduction:

main ideas of the new algorithms

2) General construction and

abstract scheme of the new algorithms

3a) Illustration of the general structure

using toy models

3b) Recovery of some known PKA algorithms

4) Resiliency to attacks

(comparative complexity).



PKA (asymmetric) algorithms

Basic problem:

A wants to send a secure message to B.

The best known Public Key Agreement (PKA)

cryptographic algorithms are asymmetric

with respect to the information

possessed by A and B.

However the operations performed

by A and B, to construct the

secret shared key (SSK), are quite similar.



Strongly asymmetric PKA algorithms

In the present talk a new method to construct

PKA algorithms is discussed

in which this residual form of symmetry

is eliminated, hence the name:

strongly asymmetric PKA algorithms.

Rather than a new class of PKA algorithms,

the method yields

a machine to produce PKA algorithms.



Main new features

– Public information is split

among multiple public keys

– B (the receiver) has one set of public keys

– The unique public key used by A

(the sender) depends on those of B.

The splitting of the public information

implies levels of:

– security

– flexibility

– variety of concrete realizations

which cannot be found

in the standard PKA algorithms.



Implementation complexity

The construction of these algorithms

does not depend on

sophisticated mathematical structures

(e.g. groups associated to elliptic curves

or complex theorems of number theory).

This implies

– easier to implement

– quicker.

Patent pending No. RM2011A000062,
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Notations and Public Ingredients:

– N, the natural integers

– P, a semigroup

(noted multiplicatively, with 1)

– α ∈ P, an element of P

{N ; P ; α}

P0(α) ≡ P0(α) := {αn : n ∈ N} ⊆ P

the (commutative) semigroup generated by α.



B (the receiver) constructs the following maps:

NB,1 : P → P easily invertible map

NB,3 : P → P easily invertible map

x̂B,1 , x̂B,2 , x̂B,3 , x̂B,4 : P → P

arbitrary functions satisfying the

compatibility conditions

x̂B,1x̂B,2|P0
= x̂B,3x̂B,4|P0

NB,1x̂B,2|P0
homomorphism : P0 → P

π(xy) = π(x)π(y) ; ∀x, y ∈ P0(α)

π(1) = 1



Step (1) Using these functions B constructs:

The Secret Key of B, i.e. the function:

x̂B := x̂B,3NB,3

The Public Keys of B, i.e. the functions:

x̂B,1N
−1
B,1 (1)

N−1
B,3x̂B,4 (2)

and the element of P

NB,1x̂B,2(α) (3)



Step (2)

B sends his public keys to A



Step (3a) A chooses her Secret Key:

a natural integer xA ∈ N

Step (3b)

using α, xA and the public key N−1
B,3x̂B,4 of B,

A computes her public key

N−1
B,3x̂B,4(αxA) =: yA



Step (4): A

A sends her public key yA to B.



Step (5): Computation of the SSK:

κ = xB,1xB,2(αxA) = xB,3xB,4(αxA)

Step (5A): A

Crucial! to calculate κ: A uses public keys

of B different from the one used to produce yA.

xB,1N
−1
B,1[NB,1xB,2(α)]xA =

xB,1N
−1
B,1[NB,1xB,2(αxA)] = xB,1xB,2(αxA) = κ

Step (5B): B

x̂B(yA) = xB,3NB,3(yA) =

xB,3NB,3(N−1
B,3xB,4)(αxA) =

xB,3xB,4(αxA) = κ



Scalar toy model (1)

Public ingredients

A finite field

F = Zp or F = GF (p)

A ∈ F

(α→ A)



Definition of the functions

Fix x1, x2, x3, x4 ∈ F and define:

x̂B,2(y) := yx2

x̂B,1(y) := yx1

x̂B,3(y) := yx3

x̂B,4(y) := yx4

NB,1 := id

NB,3 := id



1–st Compatibility condition:

x̂B,1x̂B,2(y) = x̂B,1(yx2) = (yx2)x1 = yx2x1

x̂B,3x̂B,4(y) = x̂B,3(yx4) = (yx4)x3 = yx4x3

Therefore:

x̂B,1x̂B,2 = x̂B,3x̂B,4 ⇔ x1x2 = x3x4 =: x̄



2–d Compatibility condition:

NB,1x̂B,2(An) = x̂B,2(An) = (An)x2 = Anx2 =

= (Ax2)n = (xB,2(A))n = NB,1x̂B,2(A)n

Thus

NB,1x̂B,2|P0
is an homomorphism



Public Keys of B:

x̂B,1N
−1
B,1(y) = x̂B,1(y) = yx1

N−1
B,3x̂B,4(y) = N−1

B,3(yx4) = yx4

NB,1x̂B,2(A) = x̂B,2(A) = Ax2

Secret Key of B:

x̂B(y) = x̂B,3NB,3(y) = yx3

x̂B ≡ x3



Secret Key of A:

xA ∈ N

Public Key of A:

yA = N−1
B,3x̂B,4(AxA) = AxAx4



A constructs the SSK:

xB,1N
−1
B,1[NB,1xB,2(A)]xA = xB,1[xB,2(A)]xA =

= xB,1xB,2(AxA) = AxAx1x2 = κ

B constructs the SSK:

x̂B(yA) = x̂B(AxAx4) = AxAx4x3 = κ

The SSK is the same

because of the compatibility condition

x1x2 = x4x3



Breaking complexity

The eavesdropper, called Eve (E) knows

the public parameters and the public keys:

A ∈ F

x1 ∈ F

x4 ∈ F

Ax2 ∈ F

yA = AxAx4 ∈ F



If E can compute the logarithm in F,

then she can recover

xAx4 = lgAyA

Since E knows x4, she recovers

xA

knowing Ax2, x1, xA, she can compute the SSK

(Ax2)xAx1 = AxAx1x2 = κ



Thus the breaking complexity of this algorithm

is equivalent to the logarithm in F.

This means that the above toy realization

does not bring a real gain with respect to

the standard PKA algorithms.



A pedagogical example

With the further specializations:

A = ax
−1
B α

x4 = 1⇔ x̄ = xB = x3

we find:

A strongly asymmetric version of

the Diffie–Hellman algorithm

The public keys of B are

yB,1 := aαxB

yB,2 := ax
−1
B α

The secret key of A is

xA ∈ N



The public key of A is:

yA := y
xA
B,2

Finally the SSK κ is

κ := axAαxAxB

A computes the SSK using yB,1:

y
xA
B,1 = (aαxB)xA = axAαxAxB

and B computes

y
xB
A = (axAx

−1
B αxA)xB = axAαxAxB = κ

Strongly asymmetric scheme!



The Diffie–Hellman algorithm

is recovered by choosing

a = 1

which gives

yB,1 =: yB := αxB

yB,2 = α

yA = αxA

κ = αxAxB



Beyond the discrete logarithm:

a simple example

B fixes the functions:

A polynomial of degree n

Qn(y) =
n∑

j=0

ajy
j ; aj ∈ F , j ∈ {0,1, . . . , n}

A polynomial of degree 1

P2(y) := a2y + b2 ; a2, b2 ∈ F

Two natural integers and a scalar

NB,3 , n2 ∈ N \ {0} ; xB,3 ∈ F



With these ingredients B constructs:

x̂B,2(y) = P2(yn2) = a2y
n2 + b2

x̂B,3(z) = zxB,3

x̂B,4(y) = cQn(y) = c
∑n
j=0 ajy

j

N̂B,3(z) = zNB,3

N̂B,1 = P−1
2 ⇔ N̂−1

B,1 = P2

x̂B,1(z) = c
xB,3Qn(

(
z
a2
− b2a2

)n−1
2 )



Compatibility conditions

x̂B,3x̂B,4(y) = cxB,3Qn(y) = x̂B,1x̂B,2(y)

x̂B,1x̂B,2 = x̂B,3x̂B,4



Public Keys of B

α

N̂B,1x̂B,2(α) = P−1
2 P2(αn2) = αn2

N̂−1
B,3x̂B,4(y) =

n∏
j=0

(c
N−1
B,3aj)y

j

N̂−1
B,3x̂B,4 ≡ (c

N−1
B,3an , . . . , c

N−1
B,3a0)

x̂B,1N̂
−1
B,1(y) =

n∏
j=0

(cxB,3aj)y
jn−1

2

x̂B,1N̂
−1
B,1 ≡ (c

N−1
B,3an , . . . , c

N−1
B,3a0 , n2)



Public Key of A

yA = N̂−1
B,3x̂B,4(αxA) =

n∏
j=0

(c
N−1
B,3aj)(αxA)j

SSK

κ = x̂B,1x̂B,2(αxA) = x̂B,3x̂B,4(αxA)

= cxB,3Qn(αxA)



Breaking complexity

Taking the following n+ 2 logarithms

logα

log c
N−1
B,3an , . . . , log c

N−1
B,3a0

E reduces the problem to the algebraic equation

log yA =
n∑

j=0

(log c
N−1
B,3aj)(αxA)j

of degree n in the unknown

y = αxA

E knows:
– the coefficients of the equation
– that at least one solution in the field F exists.
Therefore E has to:
– find all solutions of this equation in F.
– for each of them (at most n)
compute the logarithm

logαxA



From this she deduces

a possible candidate for xA:

xA =
logαxA

logα

After that, she proceeds by exhaustive search.



Comparative complexity

Supposing zero cost for:

– the logarithms

– the exhaustive search,

then the breaking complexity is equivalent

to find all the roots in the finite field F
of the algebraic equation of degree n

with coefficients in F.

No general solution method is known for n ≥ 5.



Many realizations of the general

scheme have been constructed.

They are structurally different:

not variants of each other.

The emphasis of the present talk

is on the unlimited potentiality

of realizations which are apparent

already from the (simplest) scalar models.

The non scalar models are much richer

in structures and possibilities.


