
Iterative Toom-Cook Methods
For Very Unbalanced Long Integers Multiplication

Alberto Zanoni

Centro “Vito Volterra” – Università di Roma “Tor Vergata”
Via Columbia 2 – 00133 Roma, Italy

zanoni@volterra.uniroma2.it

Abstract. We consider the multiplication of long integers when one factor is much bigger than the other one. We
describe an iterative approach using Toom-Cook unbalanced methods, by evaluating the smaller factor just once.
The particular case of Toom-2.5 is considered in full detail, and a further optimization depending on the parity of
shortest operand evaluation in 1 is described. A comparison with GMP library is also presented.

AMS Subject Classification: 11A05, 11A25, 11K65, 11Y70

Keywords and phrases: Long integers, multiplication, Karatsuba, Toom-Cook

1 Introduction

Starting with the works of Karatsuba [6], Toom [9] and Cook [3], who found methods to lower asymptotic complexity
for polynomial multiplication from O(n2) to O(ne), where 1 < e 6 log2 3, many efforts have been done to find optimized
implementations in arithmetic software packages [7], [4], [5].

The family of Toom-Cook (Toom, for short) methods is an infinite set of algorithms (Toom-3, Toom-4, etc. –
Karatsuba may be identified with Toom-2). The original family was generalized by Bodrato and Zanoni in [2] by
considering unbalanced operands as well – that is, polynomials with different degrees – with the so-called Toom-(k+1/2)
methods (Toom-2.5, Toom-3.5, etc.) and with the unbalanced use of classic methods.

Each of them may be viewed as solving a polynomial interpolation problem, with base points not specified a priori,
from which a matrix to be inverted is born. In a software implementation, a set O of basic operations (typically sums,
subtractions, bit shiftings, multiplications and divisions by small numbers, etc.) is given. Practically, this is a set of very
efficiently implemented basic functions in a certain computer language, and the idea is to use them both to evaluate
factors in the base points and invert the resulting matrix step by step, by using row elementary operations.

When Toom methods are applied to long integers multiplication, carries and borrows enter the game, and code
implementing each method must also take care of this aspects. The latest release of GMP library [5], our reference,
implements many Toom methods, for balanced and limitedly unbalanced factors. For very unbalanced factors, either
an iterative approach is used or, if factors are very long, FFT (see [8]) is used.

In this work we describe the general use of unbalanced Toom methods for iterative multiplication applied to very
unbalanced factors, with an ad hoc optimization. In particular, we explain in full detail the basic and iterative Toom-2.5
method (the smallest unbalanced case), introducing a further optimization that can be exploited.

2 Toom-Cook method general description

We briefly summarize Toom-k multiplication algorithm for natural numbers. Let u, v ∈ N: to compute the product
u · v = w ∈ N, follow the five below indicated steps.

Splitting : Fix an appropriate basis B ∈ N and represent the two operands by two homogeneous polynomials a, b ∈
N[x, h] with degree d1, d2 respectively and 0 6 ai, bi < B (base B expansion). In computer science, usually B is a
power of two.

a(x, h) =
d1∑

i=0

aix
ihd1−i ; b(x, h) =

d2∑
i=0

bix
ihd2−i

One has u = a(B, 1) and v = b(B, 1). Let c(x, h) = a(x, h)b(x, h), with deg(c) = d1 + d2. For the classical Toom-k
method one has d1 = d2 = k− 1, while in general, for possibly unbalanced operands, it must be d1 + d2 = 2(k− 1)
– in this case k can be whatever multiple of 1/2.



2 Iterative Toom-Cook Methods For Very Unbalanced Long Integers Multiplication

Evaluation : Choose 2k − 1 values vi = (v′i, v
′′
i ) ∈ Z2 with v′i and v′′i coprime and such that vi 6= ±vj for i 6= j:

evaluate both operands on all of them, obtaining a(vi), b(vi).
Recursion : Compute wi = a(vi) · b(vi) recursively. Let w = (wi) be the so obtained values vector.
Interpolation : Solve the interpolation problem c(vi) = wi inverting the obtained pseudo–Vandermonde matrix Ak

generated by the vi values, computing c = A−1
k w, where c = (ci) is the vector of c(x, h) coefficients.

Recomposition : Once all coefficients are computed, it’s enough to evaluate back w = c(B, 1).

Standard complexity analysis shows that Toom-k’s is O(nlogk(2k−1)). The multiplicative constant hidden by the
O(·) notation absorbs the complexity of Splitting, Evaluation, Interpolation and Recomposition phases. In order to
minimize it, an accurate choice of vi values and of the operations sequence for Evaluation and Interpolation phases
helps in reducing the extra overhead. Details about this can be found in [2], [1], [12].

Example 1 (Toom-2.5, Toom-3). The matrices A2.5 and A3, obtained by the interpolation values {(1, 0), (−1, 1), (1, 1),
(0, 1)} and {(1, 0), (2, 1), (−1, 1), (1, 1), (0, 1)}, respectively, are

A2.5 =


1 0 0 0

−1 1 −1 1
1 1 1 1
0 0 0 1

 ; A3 =


1 0 0 0 0

16 8 4 2 1
1 −1 1 −1 1
1 1 1 1 1
0 0 0 0 1


3 Toom-2.5 method description

While in the following section we’ll describe the iterative use of the smallest unbalanced Toom method, we report here
all details of the basic version; for the sake of simplicity, in this and in the following section we use non-homogeneous
notation. In this case we set ν′ = blog2 vc+ 1, ν = dν′/2e and B = 2ν , having thus

a(x) = a2x
2 + a1x + a0 ; b(x) = b1x + b0 ; c(x) = c3x

3 + c2x
2 + c1x + c0

We recall that, because of the recursive implicit use, the coefficients a0, a1, a2, b0 and b1 are themselves long integers
with bit length 6 ν (a2 and b1 bit lengths may be strictly smaller than ν). There are only two non trivial evaluations
to compute, corresponding in practice to set x = ±1.

3.1 Classical version

Evaluation phase is completed with 5 algebraic additions, as follows (t is a temporary variable):

t = a2 + a0

a+ = t + a1 ; b+ = b0 + b1

a− = t− a1 b− = b0 − b1

Computing the 4 needed values by multiplying corresponding evaluations we may set up the interpolation problem:

wi = a(vi)b(vi) = c(vi) ; i = 0, . . . , 3 =⇒


1 0 0 0

−1 1 −1 1
1 1 1 1
0 0 0 1




c3

c2

c1

c0

 =


w3

w2

w1

w0

 =


a2b1

a−b−

a+b+

a0b0


As the bit length of wi is 2ν (it may be smaller for w3), we indicate with the prefixes H and L their high (most
meaningful) and low (less meaningful) parts: wi = Hix + Li. Note moreover that c3 = w3 and c0 = w0. Beginning
the interpolation, with two algebraic sums and a shift (indicated with �) we destructively have what we call the
“decoupling” step:

w2 = w2 + w1 =⇒ (0 2 0 2) Addition
w2 = w2 � 1 =⇒ (0 1 0 1) Shift (division by 2)
w1 = w1 − w2 =⇒ (1 0 1 0) Subtraction

If at this point we “mix” interpolation and recomposition phases, it is possible to save a O(ν)-addition. Consider
infact the final recomposition at this point: formally, with new values of w1 and w2 after decoupling, we have

c(x) = (w3)x3 + (w2 − w0)x2 + (w1 − w3)x + w0



Alberto Zanoni 3

but we must consider overlaps: we may infact rewrite c(x) as follows.

c(x) = (H3)x4 + (H2 + (L3 −H0))x3 + (L2 −H3 + H1 − L0)x2 + (L1 − (L3 −H0))x + L0

= c′4x
4 + c′3x

3 + c′2x
2 + c′1x + c′0

Note that the value L3 −H0 occurs two times, and it can then be computed just once. Supposing that an operation
in the interpolation phase has double cost, we need in total 15 additions and 2 shifts of complexity O(ν) each. In the
case of long integers, one should of course take care of carries and borrows as well, but we do not describe all technical
details here.

3.2 Even Toom-2.5

Sometimes it is also possible to use another version of Toom-2.5, by applying the so-called “divide by 2” technique
introduced in [11]. The technique is based on the observation that

c(vi)
C

=
a(vi)b(vi)

C
=

a(vi)
C

b(vi) = a(vi)
b(vi)
C

for whatever constant C ∈ N dividing exactly both members of whatever pair of above equalities. Now, take C = 2 for
Toom-2.5 and test if b0 ≡ b1 (mod 2) – just compare their least meaningful bits. If it is the case, then b0 + b1 (and
b0 − b1 as well) is even, and we can compute the “divided by 2” products

w′1 =
w1

2
= a+ b+

2
; w′2 =

w2

2
= a−

b−

2

realizing the decoupling step with just two algebraic additions. This can also be done if a0 + a2 ≡ a1 (mod 2) (a+ and
a− as well are even). In the below pseudo-code, t1, t2 are temporary variables:

Even evaluations : a

a+ = a2 + a0 b+ = b0 + b1

a+ = a+ + a1 b− = b0 − b1

a+ = a+ � 1 a− = a+− a1

∣∣∣∣∣∣∣∣
Even evaluations : b

t1 = a2 + a0 b− = b0 − b1

a+ = t1 + a1 b− = b− � 1
a− = t1 − a1 b+ = b−+ b1︸ ︷︷ ︸

t2 = a−b−

w1 = a+b+

w2 = w1 + t2
w1 = w1 − t2

Note that the shift operation moved in the evaluation phase, so that its cost is halved. With a probability of 75 %, the
number of O(ν) shifts is 1, not 2, so that the average linear complexity of Toom-2.5 is (A = addition, S = shift)

L2.5 = 15A +
1
4
(2S) +

3
4
S = 15A +

5
4
S

4 Iterative Toom-Cook methods

In [10] the first approach to an iterative use of Karatsuba (i.e. Toom-2) method was proposed. Inspired by those ideas,
we present here an iterative approach for generic very unbalanced Toom methods. We first present the particular case
of Toom-2.5, and then the general one. Let d1 = d be much bigger than d2 = 1: we have

a(x) =
d∑

i=0

aix
i ; b(x) = b1x + b0

so that

c(x) =
d+1∑
i=0

cix
i = (adb1)xd+1 + (adb0 + ad−1b1)xd + · · ·+ (a1b0 + a0b1)x + (a0b0)

with
cd+1 = adb1 ; c0 = a0b0 ; ci = aib0 + ai−1b1 : i = 1, . . . , d (1)



4 Iterative Toom-Cook Methods For Very Unbalanced Long Integers Multiplication

4.1 Iterative Toom-2.5

Let m =
⌊

d + 1
3

⌋
and split a(x) into sub-polynomials (“sections”) of degree 2 each until possible, as follows – mathe-

matically speaking, set y = x3 and consider a(x) opportunely as ā(x, y) =
∑

j

aj(x)yj =
∑

j

(a3j+2x
2 +a3j+1x+a3j)yj :

a(x) = a′(x)x3m + (a3m−1x
2 + a3m−2x + a3m−3)x3(m−1) + · · ·+ (a5x

2 + a4x + a3)x3 + (a2x
2 + a1x + a0)

Note that we may have a “border” effect when the most meaningful part of a(x), indicated here with a′(x), has degree
smaller than 2 (it may be a′(x) = 0 as well). Applying Toom-2.5 method to aj(x) and b(x), we may reconstruct
sectionwise the final result.

Note that for each product aj(x)b(x) the second factor b(x) is fixed, and therefore we can compute b+ and b− just
once, using them for every product. At step j, Toom-2.5 gives the four values

a3j+2b1 , c3j+2 , c3j+1 , a3jb0

The coefficients c3j , with j > 0, can be obtained simply by adding the products a3(j−1)+2b1, obtained at step j − 1,
and a3jb0, obtained at step j (when j = 0, we directly have c0 = a0b0, with no extra addition, and similarly for cd+1, if
deg(a′(x)) = 2). If deg(a′(x)) < 2, we recursively compute c′(x) = a′(x)b(x), using the most appropriate multiplication
method, finally obtaining the remaining highest part of c(x), whose less meaningful part must be combined with the
most meaningful part of the precedent section.

For what concerns additions, all sections need 15 of them in total: the first one (j = 0) works as the (classical or
even) Toom-2.5 case, while for all the other ones (j = 1, . . . m− 1) we have two less, as we don’t need to evaluate b any
more, but the recomposition asks for two more. For the number of shifts, there are three cases to consider:

1. b+ ≡ b− ≡ 0 (mod 2) : we can use even Toom-2.5 for all m sections, and just one single shift is needed.

2. b+ ≡ b− ≡ 1 (mod 2), a+
j ≡ a−j ≡ 0 (mod 2) : we can use even Toom-2.5 for this section.

3. b+ ≡ b− ≡ 1 (mod 2), a+
j ≡ a−j ≡ 1 (mod 2) : we must use classical Toom-2.5 for this section.

The probability of case 1 is 50% = 1/2. To compute the average shift complexity, we have to consider the event E(m,h)
related to cases 2 and 3, described as follows: b+ ≡ 1 (mod 2) and for 0 6 h 6 m sections, even Toom-2.5 cannot be
applied, while for the remaining m−h ones it can. The probability of E(m,h) and the associated number of O(ν) shifts
S(m,h) are

p(E(m,h)) =
1
2
· 1
2m

(
m

h

)
; S(m,h) = 2h + (m− h) = m + h

so that the average number S(m) of O(ν) shifts is given by the following expression:

S(m) =
1
2

[
1 +

m∑
h=0

1
2m

(
m

h

)
(m + h)

]
=

1
2

[
1 +

1
2m

m∑
h=0

(
m

h

)
m +

m∑
h=0

1
2m

(
m

h

)
h

]

=
1
2

[
1 +

m

2m

m∑
h=1

(
m

h

)
+

1
2m

m∑
h=0

h
m!

h!(m− h)!

]

=
1
2

[
1 +

m

2m

m∑
h=0

(
m

h

)
1h1m−h +

1
2m

m∑
h=1

h
m(m− 1)!

h(h− 1)!(m− 1− h + 1)!

]

=
1
2

[
1 +

m

2m
(1 + 1)m +

m

2m

m∑
h=1

(m− 1)!
(h− 1)!(m− 1− (h− 1))!

]

=
1
2

[
1 +

m

2m
2m +

m

2m

m−1∑
h=0

(m− 1)!
h!(m− 1− h))!

]
=

1
2

[
1 + m +

m

2m
2m−1

]
=

=
1
2

[
1 + m +

m

2

]
=

1
2

[
1 +

3
2
m

]
=

3m + 2
4



Alberto Zanoni 5

The average linear complexity L(m)
2.5 for all sections and the total complexity L2.5(d) are then

L(m)
2.5 = (15m)A +

3m + 2
4

S ; L2.5(d) = L(b(d+1)/3c)
2.5 + L′2.5(d)

where L′2.5(d) is the residual complexity due to the “border” extra component a′(x)b(x), depending on a′(x).
For what concern the number of multiplications (see equation 1) with “classic” method Mc(d), we have one product

for c0 and cd+1 each, and two for all other cj , 1 6 j 6 d. With Toom-2.5 iterative method, we have four multiplications
every three coefficients, so that the total number M2.5(d) is lowered (similarly as before, we indicate with M′(d) the
number of “remaining” multiplications due to a′(x), of order O(1)).

Mc(d) = 2(d + 1) ; M2.5(d) = 4
⌊

d + 1
3

⌋
+M′(d)

The ratio of these two numbers and the corresponding gain are then

R2.5(d) =
M2.5(d)
Mc(d)

' 4
3
· d + 1
2(d + 1)

−−−→
d→∞

2
3

; G2.5(d) = 1−R2.5(d) −−−→
d→∞

1
3
' 33 %

4.2 Iterative Toom-k

For the generic Toom-k method (k can be whatever multiple of 1/2), we consider its most unbalanced version, giving
us sections of a(x) with degree equal to 2k − 3. The schema is similar to the one used in the iterative Toom-2.5 case:
the product of section aj(x) and b(x) gives now

a(2k−2)j+2k−3b1 , c(2k−2)j+2k−3 , · · · , c(2k−2)j+1 , a(2k−2)jb0

where the first and last product have to be recombined with (last product of) precedent and (first product of) following
section to obtain the two extremal coefficients.

We have m =
⌊

d + 1
2k − 2

⌋
(set y = x2k−2), and the number of multiplications is now

Mk = (2k − 1)
⌊

d + 1
2(k − 1)

⌋
+M′(d)

with a gain Gk(d) ' 1− 2k − 1
2(k − 1)

d + 1
2(d + 1)

−−−→
d→∞

1− 2k − 1
4(k − 1)

−−−−→
k→∞

50 %

For small values of k, ad hoc versions of Toom-k methods are considered in GMP: each one has a different specific
and specialized evaluation and interpolation phase. For asymptotically big k values, Toom-k method are simply not
used in practice, because of the more effective FFT method. It is therefore not possible for us to present a general
treatment of linear complexity of their iterative counterparts here.

5 Iterative Toom-2.5 method: Implementation

We implemented C code for iterative Toom-2.5 method, available on request, by using GMP library. GMP library packs
bits in blocks, called limbs (a classical case is when a limb has 32 bits). Our implementation needs a (4ν + 2)-limbs
scratch space. We report a scheme of the needed operations only for the generic section for classical Toom-2.5, for
simplicity. For even Toom-2.5 cases and all technical details concerning carries and borrows treatment we invite the
reader to refer directly to the code itself. The characteristics of our architecture are the following:

Processor Intel Core 2 Duo : 3 GHz
RAM 4 GB
Operating System Linux Kubuntu 8.10
C Compiler gcc 4.3.2

We indicate with S the scratch space and with R the area in which the current part of the result should “appear”.
Actually 5 ν-parts should be present in R, but we split them: the less meaningful three parts in R and the two most
meaningful ones in S, so that the possible final recomposition if deg(a′) < 2 can be straightforwardly done. At the
beginning, we indicate with Hp and Lp the values H3 and H2 + L3 −H0 (the most meaningful ones), respectively, of



6 Iterative Toom-Cook Methods For Very Unbalanced Long Integers Multiplication

the result given by Toom-2.5 applied to the precedent section. We save the evaluation values b+ and b− in the highest
part of the memory area that will contain the result.

R S
a0 + a2 Hp Lp

a0 + a1 + a2 a0 + a2 Hp Lp

a0 + a2 H1 L1 Hp Lp

a0−a1+a2 H1 L1 Hp Lp

H2 L2 H1 L1 Hp Lp

H2 + H1 L2 + L1 H1 L1 Hp Lp

H2 =
H2 + H1

2
L2 =

L2 + L1

2
H1 L1 Hp Lp

H2 L2 H1 = H1−H2 L1 = L1−L2 Hp Lp

· · · H2 H1+L2 L1 Hp Lp

H2 H0 L0 H1+L2 L1 Hp Lp

H2 H0 L0 H1+L2−L0 L1 Hp Lp

H2 H0 L0 + Lp H1+L2−L0 L1 Hp

H2 H0 L0 + Lp H1+L2−L0 L1 + Hp

H2 H0 L0 + Lp H1+L2−L0 L1 + Hp H3 L3

H2 L3 −H0 L0 + Lp H1+L2−L0 L1 + Hp H3

L3 −H0 L0 + Lp H1+L2−L0 L1 + Hp H3 H2+L3−L0

L1+Hp−L3+H0 L0 + Lp H1+L2−L0 H3 H2+L3−L0

H1+L2−L0−H3 L1+Hp−L3+H0 L0 + Lp H3 H2+L3−L0

At the end, (the first three parts of) R and (the first two parts of) S contain the correct values for the current section,
and the whole process can be iterated.

Figure 1 shows the behavior of iterative Toom-2.5 with respect to GMP 4.3.1, the latest official release. On x and
y axes we report the number of limbs of u and v: from 1 to 5000 and from 1 to 1000, respectively. Inside the region of
applicability of iterative Toom-2.5 method – the infinite triangle between x-axis and the line y = 2x/3 – the darker the
point, the bigger the gain with respect to GMP: white indicates that GMP is faster. On our architecture, in the shown
region we obtained an average percentage gain (counting only cases in which iterative Toom-2.5 is faster than GMP)
of 5.01 % and a maximum gain of 29.05 % (the extra linear complexity “consumes” part of the possible gain).

In figure 2 and 3 we report other two graphics comparing iterative Toom-2.5 with a development version (pre-4.4)
of GMP library (beginning of December 2009). The last graphic was obtained considering a small code modification
concerning thresholds related to different multiplication methods choosing in the general low-level function mpn mul.
The average and maximum gains in this case were 5.07 % and 32.09 %. Note that in this very last case iterative Toom-2.5
method is particularly effective in a well localized bottom horizontal strip, immediately above a thin white one, given
by high-school multiplication method, used when one factor is sensibly small (below a certain threshold).

Fig. 1. Iterative Toom-2.5 vs. GMP 4.3.1. Limbs: [1, 5000]× [1, 1000]. Gains: Average 5.01% ; Max 29.05 %

We observed that exploiting just the parity of b+ and b− our code is on average slightly faster than taking into
consideration also the parity of a+ and a−. This seems to mean that the extra operations needed for each section to
distinguish between classic and even Toom-2.5 are not always worth the gain. Anyway, more tests on many different
hardware and software architecture are needed to have a clear idea of the general behavior of the code.



Alberto Zanoni 7

Fig. 2. Iterative Toom-2.5 vs. GMP pre-4.4.0. Limbs: [1, 5000]× [1, 1000]. Gains: Average 5.07% ; Max 32.09 %

Fig. 3. Iterative Toom-2.5 vs. GMP pre-4.4.0, modified. Limbs: [1, 5000]× [1, 1000]. Gains: Average 3.80% ; Max 33.64 %

6 Acknowledgements

A grateful thank goes to Marco Bodrato, for his precious advice and constant encouragement and help in preparing
the C code and the paper organization. This work is dedicated to him.

7 Conclusion

We described an approach to very unbalanced long integers multiplication by means of unbalanced Toom-Cook methods.
We detailed the Toom-2.5 case comparing the performance of our code with GMP library. The approach revealed to be
quite effective in a well-defined region of the product space, and more unbalanced Toom-k methods promise to behave
effectively as well.

References

1. Marco Bodrato. Towards optimal Toom-Cook multiplication for univariate and multivariate polynomials in characteristic 2
and 0. In Claude Carlet and Berk Sunar, editors, WAIFI ’07 proceedings, volume 4547 of Lecture Notes in Computer Science.
Springer, June 2007.

2. Marco Bodrato and Alberto Zanoni. Integer and polynomial multiplication: Towards optimal Toom-Cook matrices. In
Christopher W. Brown, editor, Proceedings of the ISSAC 2007 Conference. ACM press, July 2007.

3. Stephen A. Cook. On the minimum computation time of functions. PhD thesis, Department of Mathematics, Harvard
University, 1966.

4. Tom St Denis, Mads Rasmussen, and Greg Rose. Multi-precision math (tommath library documentation). URL:
http://math.libtomcrypt.com/files/tommath.pdf.

5. The GNU multiple precision (GMP) library documentation. URL: http://gmplib.org/#DOC.
6. Anatolii Alexeevich Karatsuba and Yuri Ofman. Multiplication of multidigit numbers on automata. Soviet Physics Doklady,

7(7):595–596, 1963.
7. Donald E. Knuth. The Art of Computer Programming. Volume 2: Seminumerical Algorithms. Addison-Wesley, 1981.
8. A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7(3–4):281–292, 1971.
9. Andrei L. Toom. The complexity of a scheme of functional elements realizing the multiplication of integers. Soviet Mathe-

matics Doklady, 3:714–716, 1963. URL: http://www.de.ufpe.br/∼toom/articles/engmat/MULT-E.PDF.
10. André Weimerskirch and Christof Paar. Generalizations of the Karatsuba algorithm for polynomial multiplication. Technical

report, Ruhr-Universität-Bochum, 2003.
11. Alberto Zanoni. Some Toom-Cook methods for even long integers. In Dorin Wainberg Daniel Breaz, Nicoleta Breaz, editor,

Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics, ICTAMI 2009,
pages 807–828. Aeternitas Publishing House, September 2009.

12. Dan Zuras. More on squaring and multiplying large integers. IEEE Transactions on Computers, 43(8):899–908, August 1994.
URL: http://ieeexplore.ieee.org/iel1/12/7318/00295852.pdf?arnumber=295852.


